VISVESVARAYA TECHNOLOGICAL UNIVERSITY BELAGAVI

MECHANICAL ENGINEERING

BE/B.Tech. Scheme of Teaching and Examinations Outcome Based Education (OBE) and Choice Based Credit System (CBCS) (Effective from the academic year 2018 – 19)

III SEMESTER

					Teachi /Week	ng Hour	'S		Exam	ination		
SI. No		Course and Course Code	Course Title	Teaching Department	Theory Lecture	Tutorial	Practical/ Drawing	Duration in hours	CIE Marks	SEE Marks	Total Marks	Credits
					L	Т	Р)	•1	L	
1	BSC	18MAT31	Transform calculus, fourier series and Numerical techniques	Mathematics	2	2		03	40	60	100	3
2	PCC	18ME32	Mechanics of Materials		3	2		03	40	60	100	4
3	PCC	18ME33	Basic Thermodynamics		3	0		03	40	60	100	3
4	PCC	18ME34	Material Science		3	0		03	40	60	100	3
5	PCC	18ME35A or 18ME35B	Metal cutting and forming Metal Casting and Welding	-	3	0		03	40	60	100	3
6	PCC	18ME36A or	Computer Aided Machine Drawing/		1	4						
Ū		18ME36B	Mechanical Measurements and Metrology		3	0		03	40	60	100	3
7	PCC	18MEL37A or	Material Testing lab			2	2	03	40	60	100	2
		18MEL37B	Mechanical Measurements and Metrology lab					03	40	60	100	
8	PCC	18MEL38A	Workshop and Machine Shop Practice (Consists of Fitting, and Machining)			2	2	03	40	60	100	2
		18MEL38B	Foundry,Forging and Welding lab									<u> </u>
		18KVK39/49	Vyavaharika Kannada (Kannada for communication)/			2			100			
9	HSMC	18KAK39/49	Aadalitha Kannada (Kannada for Administration)	HSMC					100		100	1
	<u> </u>		OR	_			r					
		18CPC39	Constitution of India, Professional		1			02	40	60		
		1001 007	Ethics and Cyber Law				is by obj					<u> </u>
					17	10		24	420	480		
				TOTAL	OR 19	OR 14	04	OR 26	OR 360	OR 540	900	24
Note	BSC: B	Basic Science, PC	C: Professional Core, HSMC: Humanity	y and Social Scier			n-credit 1	-		_		<u> </u>
			da (Kannada for communication) is for stration) is for students who speak, read			eading a	nd writii	ng studei	nts and	18KAK	39 Aada	litha

Course prescribed to lateral entry Diploma holders admitted to III semester of Engineering programs

 10
 NCMC
 18MATDIP31
 Additional Mathematics - I
 Mathematics
 02
 01
 - 03
 40
 60
 100
 0

 a) The mandatory non – credit courses Additional Mathematics I and II prescribed for III and IV semesters respectively, to the lateral entry Diploma holders admitted to III semester of BE/B. Tech programs, shall attend the classes during the respective semesters to complete all the formalities of the course and appear for the University examination. In case, any student fails to register for the said course/ fails to secure the minimum 40 % of the prescribed CIE marks, he/she shall be deemed to have secured F grade. In such a case, the students have to fulfill the requirements during subsequent semester/s to appear for SEE.

b) These Courses shall not be considered for vertical progression, but completion of the courses shall be mandatory for the award of degree.

Courses prescribed to lateral entry B. Sc degree holders admitted to III semester of Engineering programs

Lateral entrant students from B.Sc. Stream, shall clear the non-credit courses Engineering Graphics and Elements of Civil Engineering and Mechanics of the First Year Engineering Programme. These Courses shall not be considered for vertical progression, but completion of the courses shall be mandatory for the award of degree.

					Teachi /Week	ng Hour	s		Exami	nation	1	
SI. No		Course and Course Code	Course Title	Teaching Department	Theory Lecture	Tutorial	Practical/ Drawing	Duration in hours	CIE Marks	SEE Marks	Total Marks	Credits
					L	Т	Р		0	S	H	
1	BSC	18MAT41	Mathematics	Mathematics	2	2		03	40	60	100	3
2	PCC	18ME42	Applied Thermodynamics		3	2		03	40	60	100	4
3	PCC	18ME43	Fluid Mechanics		3	0		03	40	60	100	3
4	PCC	18ME44	Kinematics of Machines		3	0		03	40	60	100	3
5	PCC	18ME45A 18ME45B	Metal cutting and forming Metal Casting and Welding		3	0		03	40	60	100	3
6	PCC	18ME46A or	Computer Aided Machine Drawing/		1	4						
Ĩ		18ME46B	Mechanical Measurements and Metrology		3	0		03	40	60	100	3
7	PCC	18MEL47A or	Material Testing lab			2	2	03	40	60	100	2
		18MEL47B	Mechanical Measurements and Metrology lab			2	2	03	40	60	100	
8	PCC	18MEL48A	Workshop and Machine Shop Practice (Consists of Fitting, and Machining)			2	2	03	40	60	100	2
ĺ		18MEL48B	Foundry, Forging and Welding lab									
		18KVK49/49	Vyavaharika Kannada (Kannada for communication)/			2			100			
9		18KAK49/49	Aadalitha Kannada (Kannada for Administration)	HSMC					100		100	1
	4C		OR									
	HSMC	18CPH49	Constitution of India, Professional		1			02	40	60		
	H	18011149	Ethics and Cyber Law				is by obj					
					17	10		24	420	480		
				TOTAL	OR	OR	04	OR	OR	OR	900	24
					19	14		26	360	540		
			nada (Kannada for communication) is fo for Administration) is for students who				and wri	ting stud	ents and	1 18KA	K39	
			ribed to lateral entry Diploma hol									

 Course prescribed to lateral entry Diploma holders admitted to III semester of Engineering programs

 10
 NCMC
 18MATDIP31
 Additional Mathematics - I
 Mathematics
 02
 01
 - 03
 40
 60
 100
 0

(a) The mandatory non – credit courses Additional Mathematics I and II prescribed for III and IV semesters respectively, to the lateral entry Diploma holders admitted to III semester of BE/B. Tech programs, shall attend the classes during the respective semesters to complete all the formalities of the course and appear for the University examination. In case, any student fails to register for the said course/ fails to secure the minimum 40 % of the prescribed CIE marks, he/she shall be deemed to have secured F grade. In such a case, the student have to fulfill the requirements during subsequent semester/s to appear for SEE.

(b) These Courses shall not be considered for vertical progression, but completion of the courses shall be mandatory for the award of degree.

Courses prescribed to lateral entry B. Sc degree holders admitted to III semester of Engineering programs

Lateral entrant students from B.Sc. Stream, shall clear the non-credit courses Engineering Graphics and Elements of Civil Engineering and Mechanics of the First Year Engineering Programme. These Courses shall not be considered for vertical progression, but completion of the courses shall be mandatory for the award of degree.

						ning H Week	ours		Exami	ination		
SI. No		rse and rse code	Course Title	Teaching Department	Theory Lecture	Tutorial	Practical/ Drawing	Duration in hours	CIE Marks	SEE Marks	Total Marks	Credits
		1			L	Т	Р	ſ	<u> </u>		L	
1	PCC	18ME51	Management and Economics		2	2		03	40	60	100	3
2	PCC	18ME52	Design of Machine Elements I		3	2		03	40	60	100	4
3	PCC	18ME53	Dynamics of Machines		3	2		03	40	60	100	4
4	PCC	18ME54	Turbo Machines		3			03	40	60	100	3
5	PCC	18ME55	Fluid Power Engineering		3			03	40	60	100	3
6	PCC	18ME56	Operations Management		3			03	40	60	100	3
7	PCC	18MEL57	Fluid Mechanics/Machines lab			2	2	03	40	60	100	2
8	PCC	18MEL58	Energy Conversion Lab			2	2	03	40	60	100	2
9	HSMC	18CIV59	Environmental Studies	Civil/ Environmental [Paper setting: Civil Engineering	1			02	40	60	100	1
				Board]	10	10	0.4	26	2(0	540	000	25
				TOTAL	18	10	04	26	360	540	900	25

AICTE activity Points: In case students fail to earn the prescribed activity Points, Eighth semester Grade Card shall be issued only after earning the required activity Points. Students shall be admitted for the award of degree only after the release of the Eighth semester Grade Card.

VI SE	MESTER				Teachi	ng Hours	s /Wook		Fyam	ination		1
SI. No		rse and se code	Course Title	Teaching Department	T Theory Lecture	Tutorial T	d Drawing	Duration in hours	CIE Marks	SEE Marks	Total Marks	Credits
1	PCC	18ME61	Finite Element Methods		3	2		03	40	60	100	4
2	PCC	18ME62	Design of Machine Elements II		3	2		03	40	60	100	4
3	PCC	18ME63	Heat Transfer		3	2		03	40	60	100	4
4	PEC	18ME64X	Professional Elective -1		3			03	40	60	100	3
5	OEC	18ME65X	Open Elective -A		3			03	40	60	100	3
6	PCC	18MEL66	Computer Aided Modelling and Analysis Lab			2	2	03	40	60	100	2
7	PCC	18MEL67	Heat Transfer Lab			2	2	03	40	60	100	2
8	MP	18MEMP68	Mini-project				2	03	40	60	100	2
9	Internship		Internship	To be carr and VIII s		ring the	vacation/	s of VI a	and VII	semeste	rs and /c	or VII
				TOTAL	15	10	06	24	320	480	800	24

Note: PCC: Professional core, PEC: Professional Elective, OE: Open Elective, MP: Mini-project.

	Pr	ofessional Elective -1	
Course code under	Course Title	Course code under	Course Title
18XX64X		18XX64X	
18ME641	Non-Traditional Machining	18ME644	Vibrations and Noise Engineering
18ME642	Refrigeration and Air conditioning	18ME645	Composite Materials Technology
18ME643	Theory of Elasticity	18ME646	Entrepreneurship Development
		Open Elective -A	

Students can select any one of the open electives offered by other Departments expect those that are offered by the parent Department (Please refer to the list of open electives under 18XX65X).

Selection of an open elective shall not be allowed if,

• The candidate has studied the same course during the previous semesters of the programme.

• The syllabus content of open elective is similar to that of the Departmental core courses or professional electives.

• A similar course, under any category, is prescribed in the higher semesters of the programme.

Registration to electives shall be documented under the guidance of Programme Coordinator/ Advisor/Mentor.

Mini-project work:

Based on the ability/abilities of the student/s and recommendations of the mentor, a single discipline or a multidisciplinary Mini- project can be assigned to an individual student or to a group having not more than 4 students.

CIE procedure for Mini-project:

(i) Single discipline: The CIE marks shall be awarded by a committee consisting of the Head of the concerned Department and two senior faculty members of the Department, one of whom shall be the Guide.

The CIE marks awarded for the Mini-project work, shall be based on the evaluation of project report, project presentation skill and question and answer session in the ratio 50:25:25. The marks awarded for the project report shall be the same for all the batch mates.

(ii) Interdisciplinary: Continuous Internal Evaluation shall be group wise at the college level with the participation of all the guides of the college. The CIE marks awarded for the Mini-project, shall be based on the evaluation of project report, project presentation skill and question and answer session in the ratio 50:25:25. The marks awarded for the project report shall be the same for all the batch mates.

SEE for Mini-project:

(i) Single discipline: Contribution to the Mini-project and the performance of each group member shall be assessed individually in the semester end examination (SEE) conducted at the department.

(ii) Interdisciplinary: Contribution to the Mini-project and the performance of each group member shall be assessed individually in semester end examination (SEE) conducted separately at the departments to which the student/s belongs to.

Internship: All the students admitted to III year of BE/B. Tech shall have to undergo mandatory internship of 4 weeks during the vacation of VI and VII semesters and /or VII and VIII semesters. A University examination shall be conducted during VIII semester and the prescribed credit shall be included in VIII semester. Internship shall be considered as a head of passing and shall be considered for the award of degree. Those, who do not take-up/complete the internship shall be declared fail and shall have to complete during subsequent University examination after satisfying the internship requirements.

VII S	EMESTER											
					Teachi	ng Hours	s /Week		Exami	nation	1	1
SI. No	Cours Cours	• • • • • • • • • • • • • • • • • • • •	Course Title	Teaching Department	Theory Lecture	Tutorial	Practical/ Drawing	Duration in hours	CIE Marks	SEE Marks	Total Marks	Credits
					L	Т	Р)	•1		
1	PCC	18ME71	Control Engineering		3			03	40	60	100	3
2	PCC	18ME72	Computer Aided Design and Manufacturing		3			03	40	60	100	3
3	PEC	18ME73X	Professional Elective - 2		3			03	40	60	100	3
4	PEC	18ME74X	Professional Elective - 3		3			03	40	60	100	3
5	OEC	18ME75X	Open Elective -B		3			03	40	60	100	3
6	PCC	18MEL76	Computer Integrated Manufacturing Lab			2	2	03	40	60	100	2
	PCC	18MEL77	Design Lab			2	2	03	40	60	100	2
7	Project	18MEP78	Project Work Phase - 1				2		100		100	1
8	Internship		Internship	(If not con carried out							s, it shall	be
				TOTAL	15	04	06	18	340	360	700	20

	Professio	nal Elective - 2	
Course code under	Course Title	Course code	Course Title
18XX73X		under 18XX73X	
18ME731	Design for Manufacture	18ME734	Total Quality Management
18ME732	Automation and Robotics	18ME735	Operations Research
18ME733	Computational Fluid Dynamics		
	Profession	nal Electives - 3	

Course code under	Course Title	Course code	Course Title
18XX74X		under 18XX74X	
18ME741	Additive Manufacturing	18ME744	Mechatronics
18ME742	Emerging Sustainable Building Cooling	18ME745	Project Management
	Technologies		
18ME743	Theory of Plasticity		

Open Elective -B

Students can select any one of the open electives offered by other Departments expect those that are offered by the parent Department (Please refer to the list of open electives under 18XX75X).

Selection of an open elective shall not be allowed if,

• The candidate has studied the same course during the previous semesters of the programme.

• The syllabus content of open elective is similar to that of the Departmental core courses or professional electives.

• A similar course, under any category, is prescribed in the higher semesters of the programme.

Registration to electives shall be documented under the guidance of Programme Coordinator/ Advisor/Mentor.

Project work:

Based on the ability/abilities of the student/s and recommendations of the mentor, a single discipline or a multidisciplinary project can be assigned to an individual student or to a group having not more than 4 students. In extraordinary cases, like the funded projects requiring students from different disciplines, the project student strength can be 5 or 6.

CIE procedure for Project Work Phase - 1:

(i) Single discipline: The CIE marks shall be awarded by a committee consisting of the Head of the concerned Department and two senior faculty members of the Department, one of whom shall be the Guide.

The CIE marks awarded for the project work phase -1, shall be based on the evaluation of the project work phase -1 Report (covering Literature Survey, Problem identification, Objectives and Methodology), project presentation skill and question and answer session in the ratio 50:25:25.The marks awarded for the Project report shall be the same for all the batch mates.

(ii) Interdisciplinary: Continuous Internal Evaluation shall be group wise at the college level with the participation of all guides of the college. Participation of external guide/s, if any, is desirable.

The CIE marks awarded for the project work phase -1, shall be based on the evaluation of project work phase -1 Report (covering Literature Survey, Problem identification, Objectives and Methodology), project presentation skill and question and answer session in the ratio 50:25:25.The marks awarded for the project report shall be the same for all the batch mates.

Internship: All the students admitted to III year of BE/B. Tech shall have to undergo mandatory internship of 4 weeks during the vacation of VI and VII semesters and /or VII and VIII semesters. A University examination shall be conducted during VIII semester and the prescribed credit shall be included in VIII semester. Internship shall be considered as a head of passing and shall be considered for the award of degree. Those, who do not take-up/complete the internship shall be declared fail and shall have to complete during subsequent University examination after satisfying the Internship requirements.

VIII S	SEMESTER		X		v		/					
					Teac	hing Hou	ırs /Week		Exami	nation		
SI. No		rse and se code	Course Title	Teaching Department	Theory Lecture	Tutorial	Practical/ Drawing	Duration in hours	CIE Marks	SEE Marks	Total Marks	Credits
					L	Т	Р		-			
1	PCC	18ME81	Energy Engineering		3			03	40	60	100	3
2	PEC	18ME82X	Professional Elective - 4		3			03	40	60	100	3
3	Project	18MEP83	Project Work Phase - 2				2	03	40	60	100	8
4	Seminar	18MES84	Technical Seminar				2	03	100		100	1
5	Internship	18XXI85	Internship	Comple of VI an VII and	d VII se	mesters		03	40	60	100	3
			•	TOTAL	06		04	15	260	240	500	18

Note: PCC: Professional Core, PEC: Professional Elective.

	Professio	nal Electives - 4	
Course code under 18XX82X	Course Title	Course code under 18XX82X	Course Title
18ME821	CNC Machine Tools	18ME824	Automobile Engineering
18ME822	Tribology	18ME825	Tool Design
18ME823	Non-Destructive Testing and Evaluation	18ME826	Fracture Mechanics

Project Work

CIE procedure for Project Work Phase - 2:

(i) Single discipline: The CIE marks shall be awarded by a committee consisting of the Head of the concerned Department and two senior faculty members of the Department, one of whom shall be the Guide.

The CIE marks awarded for the project work phase -2, shall be based on the evaluation of project work phase -2 Report, project presentation skill and question and answer session in the ratio 50:25:25. The marks awarded for the project report shall be the same for all the batch mates.

(ii) Interdisciplinary: Continuous Internal Evaluation shall be group wise at the college level with the participation of all guides of the college. Participation of external guide/s, if any, is desirable.

The CIE marks awarded for the project work phase -2, shall be based on the evaluation of project work phase -2 Report, project presentation skill and question and answer session in the ratio 50:25:25. The marks awarded for the project report shall be the same for all the batch mates. **SEE for Project Work Phase - 2:**

(i) Single discipline: Contribution to the project and the performance of each group member shall be assessed individually in semester end examination (SEE) conducted at the department.

(ii) Interdisciplinary: Contribution to the project and the performance of each group member shall be assessed individually in semester end examination (SEE) conducted separately at the departments to which the student/s belongs to.

Internship: Those, who have not pursued /completed the internship, shall be declared as fail and have to complete during subsequent University examination after satisfying the internship requirements.

AICTE activity Points: In case students fail to earn the prescribed activity Points, Eighth semester Grade Card shall be issued only after earning the required activity Points. Students shall be admitted for the award of degree only after the release of the Eighth semester Grade Card. Activity points of the students who have earned the prescribed AICTE activity Points shall be sent the University along with the CIE marks of 8th semester. In case of students who have not satisfied the AICTE activity Points at the end of eighth semester, the column under activity Points shall be marked NSAP (Not Satisfied Activity Points).

		B.E. Mechanic Outcome Based Education (OBE) an		e Based Credit	System (CBCS)	
		OPEN EL		-		
Course Code			18ME	65X	CIE Marks	40
Teaching Hour	rs/Week	(L:T:P)	3:0:	0	SEE Marks	60
Credits		· · · · ·	03		Exam Hours	03
The candidateThe syllabusA similar control	te has stud content o urse, unde	ive shall not be allowed if, lied the same course during the previous semes f open elective is similar to that of the Departm r any category, is prescribed in the higher seme hall be documented under the guidance of Prog	ental core sters of th	courses or profes	or/Mentor.	
				Course	Course	Title
Sl. No.	B	oard and the Department offering the Electives	Sl. No.	Course code under 18XX65X	Course	Title
Sl. No.	B			code under	Course	
SI. No.				code under 18XX65X		ergy Sources
Sl. No.	Be	Electives	No.	code under 18XX65X 18ME651	Non-Conventional End	ergy Sources turing

		B.E Mechanic: Outcome Based Education (OBE) and SEMEST	l Choice FER - V	e Based Čredit II	System (CBCS)	
~ ~ .		OPEN ELI				
Course Code	/11/		18ME	-	CIE Marks	40
Teaching Hou	rs/Week	(L:1:P)	3:0:	0	SEE Marks	60
Credits		ne of the open electives offered by other Departmeter	03		Exam Hours	03
 Selection of an The candida The syllabus A similar co 	open elect te has stud content c urse, unde	ned programme syllabus book or VTU website v ive shall not be allowed if, lied the same course during the previous semeste f open elective is similar to that of the Departme r any category, is prescribed in the higher semes	ers of the ental core sters of th	programme. courses or profese e programme.		
 Selection of an The candida The syllabus A similar co 	open elect te has stud content c urse, unde	ive shall not be allowed if, lied the same course during the previous semesto f open elective is similar to that of the Departme	ers of the ental core sters of th	programme. courses or profes e programme. bordinator/ Advise	or/Mentor.	Title
 Selection of an The candida The syllabus A similar co Registration to o 	open elect te has stud content o urse, undo	ive shall not be allowed if, lied the same course during the previous semeste f open elective is similar to that of the Departme r any category, is prescribed in the higher semes hall be documented under the guidance of Progr	ers of the ental core sters of th amme Co	programme. courses or profe: e programme. oordinator/ Advise Course		Title
 Selection of an The candida The syllabus A similar co 	open elect te has stud content o urse, undo	ive shall not be allowed if, lied the same course during the previous semeste f open elective is similar to that of the Departme r any category, is prescribed in the higher semes	ers of the ental core sters of th amme Co	programme. courses or profes e programme. bordinator/ Advise	or/Mentor.	Title
 Selection of an The candida The syllabus A similar co Registration to a 	open elect te has stud content o urse, undo	ive shall not be allowed if, lied the same course during the previous semester of open elective is similar to that of the Departme r any category, is prescribed in the higher semes hall be documented under the guidance of Progr bard and the Department offering the	ers of the ental core sters of th amme Co	programme. courses or profe: e programme. oordinator/ Adviso Course code under	or/Mentor.	
 Selection of an The candida The syllabus A similar co Registration to o 	bpen election content of urse, unde electives s B	ive shall not be allowed if, lied the same course during the previous semest of open elective is similar to that of the Department of any category, is prescribed in the higher semes hall be documented under the guidance of Progr pard and the Department offering the Electives	ers of the ental core sters of th amme Co	programme. courses or profe: e programme. oordinator/ Adviso Course code under 18XX75X	or/Mentor.	ent
Selection of an The candida The syllabus A similar co Registration to SI NO	open elect te has stud content o urse, undo	ive shall not be allowed if, lied the same course during the previous semester of open elective is similar to that of the Departme r any category, is prescribed in the higher semes hall be documented under the guidance of Progr bard and the Department offering the	ers of the ental core sters of th amme Co Sl No 1	programme. courses or profes e programme. oordinator/ Adviss Course code under 18XX75X 18ME751	or/Mentor. Course Energy and Environm	ent

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) **SEMESTER - III** TRANSFORM CALCULUS, FOURIER SERIES AND NUMERICAL TECHNIQUES (Common to all Programmes) Course Code 18MAT31 40 CIE Marks Teaching Hours/Week (L:T:P) (2:2:0)SEE Marks 60 Credits 03 Exam Hours 03 **Course Learning Objectives:** To have an insight into Fourier series, Fourier transforms, Laplace transforms, Difference equations and Z-transforms. To develop the proficiency in variational calculus and solving ODE's arising in engineering • applications, using numerical methods. Module-1 Laplace Transforms: Definition and Laplace transform of elementary functions. Laplace transforms of Periodic functions and unit-step function – problems. **Inverse Laplace Transforms:** Inverse Laplace transform - problems, Convolution theorem to find the inverse Laplace transform (without proof) and problems, solution of linear differential equations using Laplace transform. Module-2 Fourier Series: Periodic functions, Dirichlet's condition. Fourier series of periodic functions period 2π and arbitrary period. Half range Fourier series. Practical harmonic analysis, examples from Module-3 Fourier Transforms: Infinite Fourier transforms, Fourier sine and cosine transforms. Inverse Fourier transforms. Simple problems. Difference Equations and Z-Transforms: Difference equations, basic definition, z-transformdefinition, Standard z-transforms, Damping and shifting rules, initial value and final value theorems (without proof) and problems, Inverse z-transform. Simple problems. Module-4 Numerical Solutions of Ordinary Differential Equations (ODE's): Numerical solution of ODE's of first order and first degree- Taylor's series method, Modified Euler's method. Range - Kutta method of fourth order, Milne's and Adam-Bashforth predictor and corrector method (No derivations of formulae), Problems. Module-5 Numerical Solution of Second Order ODE's: Runge -Kutta method and Milne's predictor and corrector method.(No derivations of formulae). Calculus of Variations: Variation of function and functional, variational problems, Euler's equation, Geodesics, hanging chain, problems. **Course Outcomes:** At the end of the course the student will be able to: CO1: Use Laplace transform and inverse Laplace transform in solving differential/ integral equation arising in network analysis, control systems and other fields of engineering. CO2: Demonstrate Fourier series to study the behaviour of periodic functions and their • applications in system communications, digital signal processing and field theory. CO3: Make use of Fourier transform and Z-transform to illustrate discrete/continuous function arising in wave and heat propagation, signals and systems. CO4: Solve first and second order ordinary differential equations arising in engineering problems using single step and multistep numerical methods. CO5:Determine the extremals of functionals using calculus of variations and solve problems arising in dynamics of rigid bodies and vibrational analysis.

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	ks			
1	Advanced Engineering Mathematics	E. Kreyszig	John Wiley & Sons	10 th Edition, 2016
2	Higher Engineering Mathematics	B. S. Grewal	Khanna Publishers	44 th Edition, 2017
3	Engineering Mathematics	Srimanta Pal et al	Oxford University Press	3 rd Edition, 2016
Reference	ce Books			
1	Advanced Engineering Mathematics	C. Ray Wylie, Louis C. Barrett	McGraw-Hill Book Co	6 th Edition, 1995
2	Introductory Methods of Numerical Analysis	S. S. Sastry	Prentice Hall of India	4 th Edition 2010
3	Higher Engineering Mathematics	B.V. Ramana	McGraw-Hill	11 th Edition,2010
4	A Text Book of Engineering Mathematics	N. P. Bali and Manish Goyal	Laxmi Publications	2014
5	Advanced Engineering Mathematics	Chandrika Prasad and Reena Garg	Khanna Publishing,	2018
Web link	s and Video Lectures:			

1. http://nptel.ac.in/courses.php?disciplineID=111

2. http://www.class-central.com/subject/math(MOOCs)

3. http://academicearth.org/

4. VTU EDUSAT PROGRAMME - 20

Choice based C	SEMESTER - II	tcome Based Education (OB	- <i>I</i>
	MECHANICS OF MA		
Course Code	18ME32	CIE Marks	40
Teaching Hours/Week (L:T:P)	3:2:0	SEE Marks	60
Credits	04	Exam Hours	03
 Course Learning Objectives: To know the different type bending, shear, torsion & t 		eloped in the member subje	cted to axial,
	erties of engineering materi	ials	
			l a dia da va
		inds bars, beams, shafts, and	-
•	ts of calculation of shear for	ce and bending moment for	beams with differen
supports.			
To expose the students to	concepts of Buckling of colu	mns and strain energy.	
Module-1 Stresses and Strains: Introduction			_
sections, Composite sections, Stre Poisson's ratio, Elastic constants a Module-2 Analysis of Stress and Strain: Int	nd relations between them.		
shear tress, Mohr circle for plane s Cylinders: Thin cylinder: Hoop's s cylinders: Lames equations.		s, circumferential and longi	tudinal strains, Thicl
Module-3		- d	
Shear Force and Bending Moment forces and bending moments, She supported beams subjected to cor Stress in Beams: Bending and sheat	ear force and bending mom centrated loads, uniformly o	ents of cantilever beams, P listributed constant / varying	in support and rolle gloads.
Module-4			
Theories of Failure: Maximum Prin		-	inclose of start-laters
Torsion: Circular solid and hallow stepped shafts, Twist in shaft secti			ission of straight and
		nin walled sections.	
Module-5	Critical load Columns w	th ninned ands. Columns	with other suppor
Columns: Buckling and stability, conditions, Effective length of colu		itin pinneu enus, columnis	with other suppor
Secant formula for columns.	11113,		
Strain Energy: Strain energy due t	o axial, shear, bending, torsi	on and impact load. Castiglia	ano's theorem I and
II and their applications.	, , 0,	,	
Course Outcomes: At the end of the	ne course, the student will b	e able to:	
CO1: Understand simple, o	compound, thermal stresses	and strains their relations ar	nd strain energy.
CO2: Analyse structural me	embers for stresses, strains a	and deformations.	
CO3: Analyse the structura	I members subjected to ber	iding and shear loads.	
• CO4: Analyse shafts subject	ted to twisting loads.		
	-		

• CO5: Analyse the short columns for stability.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	ook/s			
1	Mechanics of Materials	J M Gere, B J Goodno,	Cengage	Eighth edition 2013
2	Fundamentals of Strength of Materials	P N Chandramouli	PHI Learning Pvt. Ltd	2013
3	Strength of Materials	R K Rajput	S. Chand and Company Pvt. Ltd	2014
Refere	nce Books			
1	Strength of Materials	R. Subramanian	Oxford	2005
2	Strength of Materials	S. S. Ratan	Tata McGraw Hill	2nd Edition, 2008
3	Mechanics of materials Strength of Materials	S C Pilli and N Balasubramanya	Cengage	2019
4	Mechanics of Materials	Ferdinand Beer, Russell Johston, John Dewolf, David Mazurek	McGraw Hill Education (India) Pvt. Ltd	Latest edition
5	Mechanics of Materials	R C Hibbeler	Pearson	Latest edition

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - III

	BASIC THERMO	DYNAMICS	
Course Code	18ME33	CIE Marks	40
Teaching Hours/Week (L:T:P)	3:0:0	SEE Marks	60
Credits	03	Exam Hours	03

Course Learning Objectives:

- Learn about thermodynamic system and its equilibrium
- Understand various forms of energy heat transfer and work
- Study the basic laws of thermodynamics including, zeroth law, first law and second law.
- Interpret the behaviour of pure substances and its application in practical problems.
- Study of Ideal and real gases and evaluation of thermodynamic properties

Module-1

Fundamental Concepts & Definitions: Thermodynamic definition and scope, Microscopic and Macroscopic approaches. Some practical applications of engineering thermodynamic Systems, Characteristics of system boundary and control surface, examples. Thermodynamic properties; definition and units, intensive, extensive properties, specific properties, pressure, specific volume, Thermodynamic state, state point, state diagram, path and process, quasi-static process, cyclic and non-cyclic; processes;

Thermodynamic equilibrium; definition, mechanical equilibrium; diathermic wall, thermal equilibrium, chemical equilibrium, Zeroth law of thermodynamics, Temperature; concepts, scales, international fixed points and measurement of temperature. Constant volume gas thermometer, constant pressure gas thermometer, mercury in glass thermometer.

Module-2

Work and Heat: Mechanics, definition of work and its limitations. Thermodynamic definition of work; examples, sign convention. Displacement work; as a part of a system boundary, as a whole of a system boundary, expressions for displacement work in various processes through p-v diagrams. Shaft work; Electrical work. Other types of work. Heat; definition, units and sign convention. Problems.

First Law of Thermodynamics: Joules experiments, equivalence of heat and work. Statement of the First law of thermodynamics, extension of the First law to non - cyclic processes, energy, energy as a property, modes of energy, Extension of the First law to control volume; steady flow energy equation(SFEE), important **Module-3**

Second Law of Thermodynamics: Limitations of first law of thermodynamics, Thermal reservoir, heat engine and heat pump: Schematic representation, efficiency and COP. Reversed heat engine, schematic representation, importance and superiority of a reversible heat engine and irreversible processes, internal and external reversibility. Kelvin - Planck statement of the Second law of Thermodynamics; PMM I and PMM II, Clausius statement of Second law of Thermodynamics, Equivalence of the two statements; Carnot cycle, Carnot principles. Problems

Entropy: Clausius inequality, Statement- proof, Entropy- definition, a property, change of entropy, entropy as a quantitative test for irreversibility, principle of increase in entropy, entropy as a coordinate.

Module-4

Availability, Irreversibility and General Thermodynamic relations. Introduction, Availability (Exergy), Unavailable energy, Relation between increase in unavailable energy and increase in entropy. Maximum work, maximum useful work for a system and control volume, irreversibility.

Pure Substances: P-T and P-V diagrams, triple point and critical points. Sub-cooled liquid, saturated liquid, mixture of saturated liquid and vapor, saturated vapor and superheated vapor states of pure substance with water as example. Enthalpy of change of phase (Latent heat). Dryness fraction (quality), T-S and H-S diagrams, representation of various processes on these diagrams. Steam tables and its use. Throttling calorimeter, separating and throttling calorimeter.

Module-5

Ideal gases: Ideal gas mixtures, Daltons law of partial pressures, Amagat's law of additive volumes, evaluation of properties of perfect and ideal gases, Air- Water mixtures and related properties. Real gases – Introduction, Van-der Waal's Equation of state, Van-der Waal's constants in terms of critical properties, Beattie-Bridgeman equation, Law of corresponding states, compressibility factor; compressibility chart. Difference between Ideal and real gases.

Course Outcomes: At the end of the course, the student will be able to:

- CO1: Explain fundamentals of thermodynamics and evaluate energy interactions across the boundary of thermodynamic systems.
- CO2: Evaluate the feasibility of cyclic and non-cyclic processes using 2nd law of thermodynamics.
- CO3: Apply the knowledge of entropy, reversibility and irreversibility to solve numerical problems and apply 1st law of thermodynamics to closed and open systems and determine quantity of energy transfers and change in properties.
- CO4: Interpret the behavior of pure substances and its application in practical problems.
- CO5: Recognize differences between ideal and real gases and evaluate thermodynamic properties of ideal and real gas mixtures using various relations.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Text	book/s			
1	Basic and Applied	P.K.Nag,	Tata McGraw Hill	2nd Ed., 2002
	Thermodynamics			
2	Basic Engineering	A.Venkatesh	Universities Press,	2008
	Thermodynamics			
3	Basic Thermodynamics,	B.K Venkanna,	PHI, New Delhi	2010
		Swati B.		
		Wadavadagi		
Refe	rence Books		-	
3	Thermodynamics- An	YunusA.Cenegal	Tata McGraw Hill publications	2002
	Engineering Approach	and Michael		
		A.Boles		
4	An Introduction to	Y.V.C.Rao	Wiley Eastern	1993,
	Thermodynamcis			
5	Engineering Thermodynamics	.B.Jones and	John Wiley and Sons.	
		G.A.Hawkins		

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - III

	MATERIAL SCIE	NCE	
Course Code	18ME34	CIE Marks	40
Teaching Hours/Week (L:T:P)	3:0:0	SEE Marks	60
Credits	03	Exam Hours	03

Course Learning Objectives:

- The foundation for understanding the structure and behaviour of materials common in mechanical engineering.
- Topics to explore the mechanical properties of metals and their alloys, polymers, ceramics, smart materials and composites.
- To understand modifications of material properties by heat treatment processes.
- Selections of different materials for various applications are highlighted.
- Impart knowledge of various failure modes of materials.

Module-1

Introduction to Crystal Structure: Coordination number, atomic packing factor, Simple Cubic, BCC,FCC and HCP Structures, Crystal imperfections–point, line, surface and volume imperfections. Atomic Diffusion: Phenomen on, Fick's laws of diffusion (First and Second Law);Factors affecting diffusion.

Mechanical Behaviour: Stress-strain diagrams showing ductile and brittle behaviour of materials, Engineering stress and true strains, Linear and non- linear elastic behaviour and properties, Mechanical properties in plastic range: Stiffness, Yield strength, Offset Yield strength, Ductility, Ultimate Tensile strength, Toughness. Plastic deformation of single crystal by slip and twinning, Mechanisms of strengthening in metals.

Module-2

Failure of Materials Fracture: Type I, Type II and Type III,

Fatigue: Types of fatigue loading with examples, Mechanism of fatigue, fatigue properties, S-N diagram, fatigue testing.

Creep: Description of the phenomenon with examples, three stages of creep, creep properties, Stress relaxation. Concept of fracture toughness, numerical on diffusion, strain and stress relaxation. Alloys, Steels, Solidification:

Conceptofformationofalloys:Typesofalloys,solidsolutions,factorsaffectingsolidsolubility(HumeRotheryrules), Binary phasediagrams:Eutectic,andEutectoidsystems,Leverrule,Intermediatephases,(The same type of process will study in Iron Carbon Phase Diagrams) Gibbs phase rule, Effect of non-equilibrium cooling, Coring and Homo genization Iron-Carbon (Cementite) diagram: description of phases, Effect of common alloying elements in steel, Common alloy steels, Stainless steel, Tool steel, Specifications of steels.

Solidification: Mechanism of solidification, Homogenous and Heterogeneous nucleation, Crystal growth, **Module-3**

Heat Treatment, Ferrous and Non-Ferrous Alloys: Heat treating of metals: Time-Temperature-Transformation (TTT) curves, Continuous Cooling Transformation (CCT) curves, Annealing: Recovery, Re crystallization and Grain growth, Types of annealing, Normalizing, Hardening, Tempering, Mar tempering, Austempering, Concept of harden ability, Factors affecting harden ability.

Surface hardening methods: carburizing, cyaniding, nit riding, flame hardening and induction hardening, Age hardening of aluminium-copper alloys and PH steels. Ferrous materials: Properties, Compositions and uses of Grey cast iron and steel.

Module-4

Composite Materials : Composite materials - Definition, classification, types of matrix materials & reinforcements, Metal Matrix Composites (MMCs), Ceramic Matrix Composites (CMCs) and Polymer Matrix Composites (PMCs), Particulate-reinforced and fiber- reinforced composites, Fundamentals of production of composites, characterization of composites, constitutive relations of composites, determination of composite properties from component properties, hybrid composites. Applications of composite materials. Numerical on determining properties of composites.

Module-5

Other Materials, Material Selection

Ceramics: Structure type sand properties and applications of ceramics. Mechanical/ Electrical behaviour and processing of Ceramics.

Plastics: Various types of polymers/plastics and their applications. Mechanical behaviour and processing of plastics, Failure of plastics.

Other materials: Brief description of other materials such as optical and thermal materials.

Smart materials–fiber optic materials, piezo-electrics, shapememory alloys–Nitinol, superelasticity.

Biological applications of smart materials-materials usedasim plants in human Body, selection of materials, performance of materials in service. Residual life assessment—use of non-destructive testing, economics, environment and Sustainability.

Course Outcomes: At the end of the course, the student will be able to:

CO1: Understand the mechanical properties of metals and their alloys.

CO2: Analyze the various modes of failure and understand the microstructures of ferrous and non-ferrous materials.

CO3: Describe the processes of heat treatment of various alloys.

CO4: Acquire the Knowledge of composite materials and their production process as well as applications.

CO5: Understand the properties and potentialities of various materials available and material selection procedures.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	ok/s		1	
1	Foundations of Materials Science and Engineering	Smith	McGrawHill	4thEdition, 2009.
2	Material science and Engineering and Introduction	WilliamD.Callister	Wiley	2006
3	Materials Science	Shackle ford., & M. K. Muralidhara	Pearson Publication	2007
Referer	nce Books			
3	Materials Science and Engineering	V.Raghavan	PHI	2002
4	The Science and Engineering of Materials	Donald R. Askland and Pradeep.P. Phule	Cengage Learning	4lhEd., 2003
5	Mechanical Metallurgy	GeorgeEllwoodDieter	McGraw-Hill.	
6	ASM Handbooks	American Society of Metals		
7	Elements of Materials Science and Engineering	H. VanVlack,	Addison- Wesley Edn	1998
8	An introduction to Metallurgy	Alan Cottrell	University Press India	1974.

Choice Based Cr	edit System (CBCS) and Outco	ome Based Education (OBE)	
	SEMESTER - III		
	METAL CUTTING AND FO	RMING	
Course Code	18ME35A/45A	CIE Marks	40
Teaching Hours/Week (L:T:P)	3:0:0	SEE Marks	60
Credits	03	Exam Hours	03

- To enrich the knowledge pertaining to relative motion and mechanics required for various machine tools.
- To introduce students to different machine tools to produce components having different shapes and sizes.
- To develop the knowledge on mechanics of machining process and effect of various parameters on machining.
- To acquaint with the basic knowledge on fundamentals of metal forming processes
- To study various metal forming processes. •

Module-1

Introduction to Metal cutting: Orthogonal and oblique cutting. Classification of cutting tools: single, and multipoint; tool signature for single point cutting tool. Mechanics of orthogonal cutting; chip formation, shear angle and its significance, Merchant circle diagram. Numerical problems.

Cutting tool materials and applications.

Introduction to basic metal cutting machine tools: Lathe- Parts of lathe machine, accessories of lathe machine, and various operations carried out on lathe. Kinematics of lathe. Turret and Capstan lathe.

Module-2

Milling: Various Milling operations, classification of milling machines, Vertical & Horizontal milling, up milling & down milling. Indexing: need of indexing, simple, compound & differential indexing.

Drilling: Difference between drilling, boring & reaming, types of drilling machines. Boring operations & boring machines.

Shaping, Planing and Slotting machines-machining operations and operating parameters.

Grinding Grinding operation classification of grinding processes: cylindrical surface & conterless Module-3

Introduction to tool wear, tool wear mechanisms, tool life equations, effect of process parameters on tool life, machinability. Cutting fluid-types and applications, surface finish, effect of machining parameters on surface finish. Economics of machining process, choice of cutting speed and feed, tool life for minimum cost and production time. Numerical problems.

Module-4

MECHANICAL WORKING OF METALS

Introduction to metal forming processes & classification of metal forming processes. Hot working & cold working of metals. Forging: Smith forging, drop forging & press forging. Forging Equipment, Defects in forging. Rolling: Rolling process, Angle of bite, Types of rolling mills, Variables of rolling process, Rolling defects. Drawing & Extrusion: Drawing of wires, rods & pipes, Variables of drawing process. Difference between drawing & extrusion. Various types of extrusion processes.

Module-5

Sheet Metal Operations: Blanking, piercing, punching, drawing, draw ratio, drawing force, variables in drawing, Trimming, and Shearing.

Bending — types of bending dies, Bending force calculation,

Embossing and coining.

Types of dies: Progressive, compound and combination dies.

Course Outcomes: At the end of the course, the student will be able to:

CO1: Explain the construction & specification of various machine tools.

CO2: Discuss different cutting tool materials, tool nomenclature & surface finish.

CO3: Apply mechanics of machining process to evaluate machining time.

CO4: Analyze tool wear mechanisms and equations to enhance tool life and minimize machining cost.

CO5: Understand the concepts of different metal forming processes.

CO6: Apply the concepts of design of sheet metal dies to design different dies for simple sheet metal components.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Text	book/s	1		I
1	Manufacturing Technology Vol I & II	P.N.Rao	Tata McGraw Hill Pub. Co. Ltd., New Delhi	1998
2	A textbook of Production Technology Vol I and II	Sharma, P.C.,	S. Chand & Company Ltd., New Delhi	1996
3	Manufacturing Science	Amithab Gosh &A.K.Malik	East-West press	2001
		Reference Bo	ooks	I
3	Workshop Technology Vol. I and II	Chapman W. A. J.	Arnold Publisher New Delhi	1998
4	Elements of Manufacturing Technology Vol II,	Hajra Choudhary, S. K. and Hajra Choudhary, A. K.	Media Publishers, Bombay	1988
5	Metal Forming Handbook	Schuler	Springer Verlag Publication	
6	Metal Forming: Mechanics and Metallurgy	Hosford,WF and Caddell,R.M	Prentice Hall	1993
7	Manufacturing Engineering and Technology	Kalpakjian	Addision Wesley CongmenPvt. Ltd.	2000
8	Production Technology	HMT		

Chains Deard O	B. E. MECHANICAL ENGI	-	
Choice Based C	redit System (CBCS) and Outo SEMESTER - III	come Based Education (OBE)	
	METAL CASTING AND W	/ELDING	
Course Code	18ME35B/45B	CIE Marks	40
Teaching Hours/Week (L:T:P)	3:0:0	SEE Marks	60
Credits	03	Exam Hours	03
Course Learning Objectives:			
 To provide adequate know 	wledge of quality test method	s conducted on welded and ca	ast components.
• To provide knowledge of	various casting process in mar	nufacturing.	
• To provide in-depth know	ledge on metallurgical aspect	s during solidification of meta	l and alloys.
	nation about the moulding pro	-	,
•	arious joining process used in		
		-	
	ut behaviour of materials duri	ing weiding, and the effect of	process
parameters in welding,			
Module-1			
Introduction & basic materials us	-	and Matala and in the form	
Introduction: Definition, Classific		esses. Metals cast in the foun	dry-classification
factors that determine the selecti			
Introduction to casting process & Patterns: Definition, classification	-	ittern, various pattern allov	vancos and the
importance.	in, materials used for pa	ittern, various pattern allov	vances and the
Sand moulding: Types of base sa	nd requirement of base sand	Binder Additives definition	need and type
preparation of sand moulds. Melo	-		, need and type.
Study of important moulding pro			ould, shell mould
investment mould, plaster mould,		,,	,
Cores: Definition, need, types. Me			
Concept of gating (top, bottom, p	arting line, horn gate) and rise	ers (open, blind) Functions and	d types.
Module-2			
MELTING & METAL MOLD CASTIN	IG METHODS		
Melting furnaces: Classification	of furnaces, Gas fired pit fu	rnace, Resistance furnace, C	oreless inductio
furnace, electric arc furnace, cons	tructional features & working	principle of cupola furnace.	
Casting using metal moulds: Gra	avity die casting, pressure die	e casting, centrifugal casting,	squeeze casting
slush casting, thixocasting, and co	ntinuous casting processes.		
Module-3			
SOLIDIFICATION & NON-FERROUS	FOUNDRY PRACTICE		
Solidification: Definition, nuclea			ed and method
Degasification in liquid metals-sou			
Fettling and cleaning of castings	-	asting defects- causes, featur	es and remedie
Advantages & limitations of castir			
Nonferrous foundry practice: Alu		-	-
out type crucible furnace. Harde			ig, grain refining
pouring temperature. Stir casting	set up, procedure, uses, adva	ntages and limitations.	
Module-4	atalaa alaastfi sa taa ay baa	tan advantance 0 Posti II	
Welding process: Definition, Prin			
welding: Principle, Metal arc wel (TIG & MIG) Submerged Arc Weld			nert Gas weidir
		elding Butt welding Snot wel	

Special type of welding: Resistance welding principles, Seam welding, Butt welding, Spot welding and Projection welding. Friction welding, Explosive welding, Thermit welding, Laser welding and Electron beam welding.

Module-5
METALLURGICAL ASPECTS IN WELDING, SOLDERING, AND BRAZING
Structure of welds, Formation of different zones during welding, Heat Affected Zone (HAZ), Parameters
affecting HAZ. Effect of carbon content on structure and properties of steel, Shrinkage in welds& Residual
stresses. Concept of electrodes, filler rod and fluxes. Welding defects- detection, causes & remedy.
Soldering, brazing, gas welding: Soldering, Brazing, Gas Welding: Principle, oxy-Acetylene welding, oxy-
hydrogen welding, air-acetylene welding, Gas cutting, powder cutting.
Inspection methods: Methods used for inspection of casting and welding. Visual, magnetic particle,
fluorescent particle, ultrasonic. Radiography, eddy current, holography methods of inspection.
Course Outcomes: At the end of the course, the student will be able to:
CO1: Describe the casting process and prepare different types of cast products.
CO2: Acquire knowledge on Pattern, Core, Gating, Riser system and to use Jolt, Squeeze, Sand Slinger
Moulding machines.
CO3: Compare the Gas fired pit, Resistance, Coreless, Electrical and Cupola Metal Furnaces.

- CO4: Compare the Gravity, Pressure die, Centrifugal, Squeeze, slush and Continuous Metal mold castings.
- CO5: Understand the Solidification process and Casting of Non-Ferrous Metals.
- CO6: Describe the Metal Arc, TIG, MIG, Submerged and Atomic Hydrogen Welding processes etc. used in manufacturing.

CO7: Describe methods for the quality assurance of components made of casting and joining process

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Text	book/s			
1	Principles of metal casting	Rechard W. Heine, Carl R. Loper Jr., Philip C. Rosenthal	Tata McGraw Hill Education Private Limited	1976
2	Manufacturing Process-I	Dr.K.Radhakrishna	Sapna Book House,	5th Revised Edition 2009.
3	Manufacturing Technology- Foundry, Forming and	P.N.Rao	Tata McGraw Hill	3rd Ed., 2003.
Refe	rence Books			
4	Process and Materials of Manufacturing	Roy A Lindberg	Pearson Edu	4th Ed. 2006
5	Manufacturing Technology	Serope Kalpakjian Steuen. R Sechmid	Pearson Education Asia	5th Ed. 2006

Choice Based C	B. E. MECHANICAL ENGINI redit System (CBCS) and Outco		E)
	SEMESTER - III		
	COMPUTER AIDED MACHINE	DRAWING	
Course Code	18ME36A/46A	CIE Marks	40
Teaching Hours/Week (L:T:P)	1:4:0	SEE Marks	60
Credits	03	Exam Hours	03
Course Learning Objectives:	•		•

ning Objectives:

- To acquire the knowledge of CAD software and its features.
- To familiarize the students with Indian Standards on drawing practices.
- To impart knowledge of thread forms, fasteners, keys, joints and couplings.
- To make the students understand and interpret drawings of machine components leading to preparation of assembly drawings manually and using CAD packages.
- To acquire the knowledge of limits, tolerance and fits and indicate them on machine drawings.

Part A

Part A

Introduction:

Review of graphic interface of the software. Review of basic sketching commands and navigational commands. Starting a new drawing sheet. Sheet sizes. Naming a drawing, Drawing units, grid and snap. Conversion of pictorial views into orthographic projections of simple machine parts (with and without section). Hidden line conventions. Precedence of lines.

Sections of Solids: Sections of Pyramids, Prisms, Cubes, Tetrahedrons, Cones and Cylinders resting only on their bases (No problems on axis inclinations, spheres and hollow solids). True shape of sections.

Conversion of pictorial views into orthographic projections of simple machine parts. Hidden line conventions. Precedence of lines.

Conversion of pictorial views into orthographic projections of simple machine parts (with section planes indicated on the part).

Thread Forms: Thread terminology, sectional views of threads. ISO Metric (Internal & External), BSW (Internal & External) square and Acme. Sellers thread, American Standard thread.

Fasteners: Hexagonal headed bolt and nut with washer (assembly), square headed bolt and nut with washer (assembly) simple assembly using stud bolts with nut and lock nut. Flanged nut, slotted nut, taper and split pin for locking, counter sunk head screw, grub screw, Allen screw.

Part B

Keys: Parallel key, Taper key, Feather key, Gib-head key and Woodruff key.

Joints: Cotter joint (socket and spigot), knuckle joint (pin joint) for two rods.

Couplings: Split Muff coupling, Protected type flanged coupling, pin (bush) type flexible coupling, and universal counling (Hooks' Joint)

Part C

Limits, Fits and Tolerances: Introduction, Fundamental tolerances, Deviations, Methods of placing limit dimensions, machining symbols, types of fits with symbols and applications, geometrical tolerances on drawings. Standards followed in industry.

Assembly Drawings: (Part drawings shall be given)

1. Plummer block (Pedestal Bearing)

- 2. Lever Safety Valve
- 3. I.C. Engine connecting rod
- 4. Screw jack (Bottle type)
- 5. Tailstock of lathe
- 6. Machine vice

7. Tool head of shaper

Course Outcomes: At the end of the course, the student will be able to:

- CO1: Identify the national and international standards pertaining to machine drawing.
- CO2: Understand the importance of the linking functional and visualization aspects in the preparation of the part drawings
- CO3: Apply limits and tolerances to assemblies and choose appropriate fits for given assemblies.
- CO4: Interpret the Machining and surface finish symbols on the component drawings.
- CO5: Preparation of the part or assembly drawings as per the conventions.

Scheme of Examination: Two questions to be set from each Part A, part B and Part C. Student has to answer one question each from Part A and Part B for 25 marks each and one question from Part C for 50 marks.

INSTRUCTION FOR COMPUTER AIDED MACHINE DRAWING (15ME36A/46A) EXAMINATION

- 1. No restriction of timing for sketching/ computerization of solutions. The total duration is 3 hours.
- 2. It is desirable to do sketching of all the solutions before computerization.
- 3. Drawing instruments may be used for sketching.
- 4. For Part A and Part B, 2D drafting environment should be used.
- 5. For Part C, 3D environment should be used for parts and assembly, and extract 2D views of assembly.
- 6. Part A and Part B
 - 25 Marks (15 marks for sketching and 10 marks for computer work)

7. Part C

50 Marks (20 marks for sketching and 30 marks for computer modelling)

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Text	book/s	•		
1	Machine Drawing	K.R. Gopala Krishna	Subhash Publication	2005
2	Machine Drawing	N.D.Bhat&V.M. Panchal	Charoratar publishing house	2005
Refe	rence Books		•	
3	A Text Book of Computer Aided Machine Drawing	S. Trymbaka Murthy	CBS Publishers, New Delhi	2007
4	Engineering drawing	P.S.Gill	S K Kataria and Sons	2013
5	Machine Drawing	N. Siddeshwar, P. Kanniah, V.V.S. Sastri	Tata McGraw Hill	2006

	B. E. MECHANICAL ENGIN					
Choice Based Cr	edit System (CBCS) and Outc	ome Based Education (OBE)				
SEMESTER - III MECHANICAL MEASUREMENTS AND METROLOGY						
Course Code 18ME36B/46B CIE Marks 40						
Teaching Hours/Week (L:T:P)	3:0:0	SEE Marks	60			
Credits	03	Exam Hours	03			
Course Learning Objectives:	05	Examinours	05			
• •	ept of metrology and standar	ds of measurement				
	e of limits, fits, tolerances and					
 To acquire knowledge of comparators. 	f linear and Angular measure	nents, Screw thread and gear	r measurement &			
 To understand the know 	ledge of measurement syster	ms and methods with emphas	sis on different			
Transducers, intermed	iate modifying and terminatir	ng devices.				
 To understand the measurement 	surement of Force, Torque, Pr	essure, Temperature and Stra	ain.			
Module-1						
Introduction to Metrology: Defini	tion objectives of motrology	Material Standards Mayola	angth Standards			
Classification of standards, Line and			-			
		-				
Liner measurement and angular r gauges, Wringing of slip gauges, Pr						
bar, Sine centre, Angle gauges, Opt			-			
measuring straightness and square		neasurements. Autocommato				
	11033.					
Module-2 System of Limits, Fits, Tolerand subtraction of tolerances) Inter ch	e and Gauging: Definitions angeability & Selective asser	nbly. Class &grade of tolerar	nce, Fits, Types o			
Module-2 System of Limits, Fits, Tolerance subtraction of tolerances) Inter ch fits, Numerical on limits, fit and to limit gauges, Numerical on limit gau Comparators: Functional requirem	e and Gauging: Definitions angeability & Selective asser lerance. Hole base system & uge design. nents, Classification, Mechan	nbly. Class &grade of tolerar shaft base system. Taylor's p ical- Johnson Mikrokator, Sig	nce, Fits, Types o principle, Types o gma comparator			
Module-2 System of Limits, Fits, Tolerance subtraction of tolerances) Inter ch fits, Numerical on limits, fit and to limit gauges, Numerical on limit gau Comparators: Functional requirem Dial indicator, Electrical compara	e and Gauging: Definitions angeability & Selective asser lerance. Hole base system & uge design. nents, Classification, Mechan	nbly. Class &grade of tolerar shaft base system. Taylor's p ical- Johnson Mikrokator, Sig	nce, Fits, Types c principle, Types c gma comparators			
Module-2 System of Limits, Fits, Tolerance subtraction of tolerances) Inter ch fits, Numerical on limits, fit and to limit gauges, Numerical on limit gau Comparators: Functional requirem Dial indicator, Electrical compara Module-3	e and Gauging: Definitions angeability & Selective asser lerance. Hole base system & uge design. nents, Classification, Mechan ators, LVDT, Pneumatic con	nbly. Class &grade of tolerar shaft base system. Taylor's p ical- Johnson Mikrokator, Sig nparators- Principle of back	nce, Fits, Types o principle, Types o ma comparator o pressure, Sole			
Module-2 System of Limits, Fits, Tolerance subtraction of tolerances) Inter ch fits, Numerical on limits, fit and to limit gauges, Numerical on limit gau Comparators: Functional requirem Dial indicator, Electrical compara	The and Gauging: Definitions angeability & Selective asser lerance. Hole base system & uge design. nents, Classification, Mechan ators, LVDT, Pneumatic con The gear: Terminology of scree Effective diameter of screw th	nbly. Class &grade of tolerar shaft base system. Taylor's p ical- Johnson Mikrokator, Sig nparators- Principle of back ew threads, Measurement of	nce, Fits, Types o principle, Types o gma comparator o pressure, Sole f major diamete			
Module-2 System of Limits, Fits, Tolerance subtraction of tolerances) Inter ch fits, Numerical on limits, fit and to limit gauges, Numerical on limit gau Comparators: Functional requirem Dial indicator, Electrical compara Module-3 Measurement of screw thread an Minor diameter, Pitch, Angle and E wire. Screw thread gauges, Toolma	te and Gauging: Definitions angeability & Selective asser lerance. Hole base system & uge design. nents, Classification, Mechan ators, LVDT, Pneumatic con Terminology of scree iffective diameter of screw th lker's microscope.	nbly. Class &grade of tolerar shaft base system. Taylor's p ical- Johnson Mikrokator, Sig nparators- Principle of back w threads, Measurement of reads by 2- wire and 3-wire n	nce, Fits, Types of principle, Types of ma comparator of pressure, Sole f major diamete nethods, Best siz			
Module-2 System of Limits, Fits, Tolerance subtraction of tolerances) Inter ch fits, Numerical on limits, fit and to limit gauges, Numerical on limit gau Comparators: Functional requirem Dial indicator, Electrical compara Module-3 Measurement of screw thread an Minor diameter, Pitch, Angle and E wire. Screw thread gauges, Toolma Gear tooth Measurements: Too	The and Gauging: Definitions angeability & Selective asser lerance. Hole base system & uge design. hents, Classification, Mechan ators, LVDT, Pneumatic con defined gear: Terminology of scree iffective diameter of screw th ker's microscope. th thickness measurement	nbly. Class &grade of tolerar shaft base system. Taylor's p ical- Johnson Mikrokator, Sig nparators- Principle of back w threads, Measurement of reads by 2- wire and 3-wire n using constant chord met	mee, Fits, Types of principle, Types of ma comparator of pressure, Sole f major diamete nethods, Best siz hod, Addendum			
Module-2 System of Limits, Fits, Tolerance subtraction of tolerances) Inter ch fits, Numerical on limits, fit and to limit gauges, Numerical on limit gau Comparators: Functional requirem Dial indicator, Electrical compara Module-3 Measurement of screw thread ar Minor diameter, Pitch, Angle and E wire. Screw thread gauges, Toolma Gear tooth Measurements: Too Comparator method and Base tan	The and Gauging: Definitions bangeability & Selective asser lerance. Hole base system & uge design. hents, Classification, Mechan ators, LVDT, Pneumatic con description of screen the gear: Terminology of screen Effective diameter of screw th lker's microscope. hth thickness measurement gent method, Measurement	nbly. Class &grade of tolerar shaft base system. Taylor's p ical- Johnson Mikrokator, Sig nparators- Principle of back w threads, Measurement of reads by 2- wire and 3-wire n using constant chord met	nce, Fits, Types o principle, Types o ma comparator pressure, Sole f major diamete nethods, Best siz hod, Addendun			
Module-2 System of Limits, Fits, Tolerance subtraction of tolerances) Inter ch fits, Numerical on limits, fit and to limit gauges, Numerical on limit gau Comparators: Functional requirem Dial indicator, Electrical compara Module-3 Measurement of screw thread ar Minor diameter, Pitch, Angle and E wire. Screw thread gauges, Toolma Gear tooth Measurements: Too Comparator method and Base tan profile. Gear roll tester for compos	The and Gauging: Definitions bangeability & Selective asser lerance. Hole base system & uge design. hents, Classification, Mechan ators, LVDT, Pneumatic con description of screen the gear: Terminology of screen Effective diameter of screw th lker's microscope. hth thickness measurement gent method, Measurement	nbly. Class &grade of tolerar shaft base system. Taylor's p ical- Johnson Mikrokator, Sig nparators- Principle of back w threads, Measurement of reads by 2- wire and 3-wire n using constant chord met	mee, Fits, Types of principle, Types of ma comparator pressure, Sole f major diamete nethods, Best siz hod, Addendum			
Module-2 System of Limits, Fits, Tolerance subtraction of tolerances) Inter ch fits, Numerical on limits, fit and to limit gauges, Numerical on limit gau Comparators: Functional requirem Dial indicator, Electrical compara Module-3 Measurement of screw thread ar Minor diameter, Pitch, Angle and E	The and Gauging: Definitions langeability & Selective asser lerance. Hole base system & uge design. hents, Classification, Mechan ators, LVDT, Pneumatic con determined gear: Terminology of scree iffective diameter of screw th lker's microscope. ht thickness measurement gent method, Measurement ite error.	nbly. Class &grade of tolerar shaft base system. Taylor's p ical- Johnson Mikrokator, Sig nparators- Principle of back w threads, Measurement of reads by 2- wire and 3-wire n using constant chord met of pitch, Concentricity, Run	nce, Fits, Types of principle, Types of ma comparators pressure, Sole f major diamete nethods, Best siz hod, Addendun out and In volut Significance of			
Module-2 System of Limits, Fits, Tolerance subtraction of tolerances) Inter ch fits, Numerical on limits, fit and to limit gauges, Numerical on limit gau Comparators: Functional requirem Dial indicator, Electrical compara Module-3 Measurement of screw thread and Minor diameter, Pitch, Angle and E wire. Screw thread gauges, Toolma Gear tooth Measurements: Too Comparator method and Base tan profile. Gear roll tester for compos Module-4 Measurement system and base	The and Gauging: Definitions langeability & Selective asser lerance. Hole base system & uge design. nents, Classification, Mechan ators, LVDT, Pneumatic con The second second d gear: Terminology of scree iffective diameter of screw th lker's microscope. Ith thickness measurement gent method, Measurement ite error. sic concepts of measuren surement system, Static cha Repeatability, Linearity, Los	nbly. Class &grade of tolerar shaft base system. Taylor's p ical- Johnson Mikrokator, Sig nparators- Principle of back w threads, Measurement of reads by 2- wire and 3-wire n using constant chord met of pitch, Concentricity, Run nent methods: Definition, racteristics- Accuracy, Precis ading effect, Dynamic charac	nce, Fits, Types of principle, Types of gma comparators of pressure, Sole f major diamete nethods, Best siz hod, Addendun out and In volut Significance of ion, Calibration,			
Module-2 System of Limits, Fits, Tolerance subtraction of tolerances) Inter ch fits, Numerical on limits, fit and to limit gauges, Numerical on limit gau Comparators: Functional requirem Dial indicator, Electrical compara Module-3 Measurement of screw thread ar Minor diameter, Pitch, Angle and E wire. Screw thread gauges, Toolma Gear tooth Measurements: Too Comparator method and Base tan profile. Gear roll tester for compos Module-4 Measurement system and bas measurement, Generalized meas Threshold, Sensitivity, Hysteresis, response, Time delay. Errors in me	The and Gauging: Definitions langeability & Selective asser lerance. Hole base system & uge design. nents, Classification, Mechan ators, LVDT, Pneumatic con The entrology of scree Ind gear: Terminology of scree Effective diameter of screw th lker's microscope. Ith thickness measurement gent method, Measurement ite error. Sic concepts of measuren surement system, Static cha Repeatability, Linearity, Los easurement, Classification of rimary and Secondary transdu	nbly. Class &grade of tolerar shaft base system. Taylor's p ical- Johnson Mikrokator, Sig nparators- Principle of back w threads, Measurement of reads by 2- wire and 3-wire n using constant chord met of pitch, Concentricity, Run nent methods: Definition, racteristics- Accuracy, Precis ading effect, Dynamic charac errors.	Ace, Fits, Types of principle, Types of gma comparator & pressure, Sole f major diamete nethods, Best siz hod, Addendun out and In volut Significance of ion, Calibration, teristics- System			
Module-2 System of Limits, Fits, Tolerance subtraction of tolerances) Inter ch fits, Numerical on limits, fit and to limit gauges, Numerical on limit gau Comparators: Functional requirem Dial indicator, Electrical compara Module-3 Measurement of screw thread ar Minor diameter, Pitch, Angle and E wire. Screw thread gauges, Toolma Gear tooth Measurements: Too Comparator method and Base tan profile. Gear roll tester for compos Module-4 Measurement, Generalized meas Threshold, Sensitivity, Hysteresis, response, Time delay. Errors in me Electronic transducers, Relative co	The and Gauging: Definitions angeability & Selective asser lerance. Hole base system & uge design. hents, Classification, Mechan ators, LVDT, Pneumatic con The entimeter Ind gear: Terminology of scree iffective diameter of screw th ker's microscope. hth thickness measurement gent method, Measurement ite error. Sic concepts of measurem surement system, Static cha Repeatability, Linearity, Los easurement, Classification of rimary and Secondary transdu- mparison of each type of tran	nbly. Class &grade of tolerar shaft base system. Taylor's p ical- Johnson Mikrokator, Sig nparators- Principle of back w threads, Measurement of reads by 2- wire and 3-wire n using constant chord met of pitch, Concentricity, Run nent methods: Definition, racteristics- Accuracy, Precis ading effect, Dynamic charac errors. ucers, Electrical transducers, M isducers.	hee, Fits, Types of principle, Types of ma comparator of pressure, Sole f major diamete nethods, Best siz hod, Addendun out and In volut Significance of ion, Calibration, teristics- System Mechanical,			
Module-2 System of Limits, Fits, Tolerance subtraction of tolerances) Inter ch fits, Numerical on limits, fit and to limit gauges, Numerical on limit gau Comparators: Functional requirem Dial indicator, Electrical compara Module-3 Measurement of screw thread ar Minor diameter, Pitch, Angle and E wire. Screw thread gauges, Toolma Gear tooth Measurements: Too Comparator method and Base tan profile. Gear roll tester for compos Module-4 Measurement system and bas measurement, Generalized meass Threshold, Sensitivity, Hysteresis, response, Time delay. Errors in me Transducers: Transfer efficiency, Pa	The and Gauging: Definitions langeability & Selective asser lerance. Hole base system & uge design. hents, Classification, Mechan ators, LVDT, Pneumatic con determined gear: Terminology of scree iffective diameter of screw the ker's microscope. the thickness measurement gent method, Measurement ite error. Sic concepts of measurement ite error. Sic concepts of measurement surement system, Static cha Repeatability, Linearity, Los easurement, Classification of rimary and Secondary transdu imparison of each type of trans- transport circuitry, Ballast circuity	nbly. Class &grade of tolerar shaft base system. Taylor's p ical- Johnson Mikrokator, Sig nparators- Principle of back w threads, Measurement of reads by 2- wire and 3-wire n using constant chord met of pitch, Concentricity, Run nent methods: Definition, racteristics- Accuracy, Precis ading effect, Dynamic charac errors. ucers, Electrical transducers, N isducers. nical systems, Inherent pro-	hoce, Fits, Types of principle, Types of ma comparator pressure, Sole f major diamete nethods, Best siz hod, Addendur out and In volut Significance of ion, Calibration teristics- System Mechanical,			

Applied mechanical measurement: Measurement of force, Torque, Pressure, Types of Dynamometers, Absorption dynamometer, Prony brake and Rope brake dynamometer, and Power Measuring Instruments. Use of elastic members, Bridgeman gauge, McLeod gauge, Pirani gauge.

Measurement of strain and temperature: Theory of strain gauges, Types, Electrical resistance strain gauge, Preparation and mounting of Strain gauges, Gauge factor, Methods of strain measurement, temperature compensation, Resistance thermometers, Thermocouple, Law of thermocouple, Pyrometer, Optical pyrometer.

Course Outcomes: At the end of the course, the student will be able to:

CO1: Understand the objectives of metrology, methods of measurement, standards of measurement & various measurement parameters.

CO2: Explain tolerance, limits of size, fits, geometric and position tolerances, gauges and their design

CO3: Understand the working principle of different types of comparators.

CO3: Describe measurement of major & minor diameter, pitch, angle and effective diameter of screw threads.

CO4: Explain measurement systems, transducers, intermediate modifying devices and terminating devices..

CO5: Describe functioning of force, torque, pressure, strain and temperature measuring devices.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

			1
Title of the Book	Name of the Author/s	Name of the Publisher	Edition
			and Year
ook/s			
Mechanical Measurements	Beckwith Marangoni and	Pearson Education	6th Ed.,
	Lienhard		2006
Instrumentation, Measurement	B C Nakra, K K Chaudhry	McGraw–Hill	4th
and Analysis			Edition
Engineering Metrology	R.K. Jain	Khanna Publishers	2009
ence Books			1
Engineering Metrology and	Bentley	Pearson Education	
Measurements			
Theory and Design for	Richard S Figliola, Donald	WILEY India Publishers	
Mechanical Measurements, III	E Beasley		
edition			
Engineering Metrology	Gupta I.C	Dhanpat Rai Publications	
Deoblin's Measurement system,	Ernest Deoblin, Dhanesh	McGraw–Hill	
	manick		
Engineering Metrologyand	N.V.Raghavendra and L.	Oxford University Press.	
Measurements	Krishnamurthy		
	Mechanical Measurements Instrumentation, Measurement and Analysis Engineering Metrology ence Books Engineering Metrology and Measurements Theory and Design for Mechanical Measurements, III edition Engineering Metrology Deoblin's Measurement system, Engineering Metrologyand	ook/sMechanical MeasurementsBeckwith Marangoni and LienhardInstrumentation, Measurement and AnalysisB C Nakra, K K ChaudhryEngineering MetrologyR.K. Jainence BooksEngineering Metrology and MeasurementsEngineering Metrology and MeasurementsBentleyTheory and Design for Mechanical Measurements, III editionRichard S Figliola, Donald E BeasleyEngineering MetrologyGupta I.CDeoblin's Measurement system, manickErnest Deoblin, Dhanesh manick	ook/sMechanical MeasurementsBeckwith Marangoni and LienhardPearson EducationInstrumentation, Measurement and AnalysisB C Nakra, K K ChaudhryMcGraw-HillEngineering MetrologyR.K. JainKhanna Publishersence BooksEngineering Metrology and MeasurementsBentleyPearson EducationTheory and Design for Mechanical Measurements, III editionRichard S Figliola, Donald E BeasleyWILEY India PublishersEngineering MetrologyGupta I.CDhanpat Rai PublicationsDeoblin's Measurement system, Engineering MetrologyandErnest Deoblin, Dhanesh manickMcGraw-HillEngineering MetrologyN.V.Raghavendra and L.Oxford University Press.

	Choice Based C	B. E. MECHANICAL ENGI			
	Choice Based Ci	redit System (CBCS) and Outo SEMESTER – III	come Based Education (OBE)		
		MATERIAL TESTING	IAR		
Cour	se Code	18MEL37A/47A	CIE Marks	40	
	hing Hours/Week (L:T:P)	0:2:2	SEE Marks	60	
Cred		0.2.2	Exam Hours	00	
	se Learning Objectives:	02	Examinouis	05	
	• •	e preparation of samples to	perform characterization such a	35	
		action of phases and grain size			
				standard tasts	
		-	eering materials by conducting	stanuaru tests.	
		nodes and the different loads	-		
			perties of materials by differen	t methods like	
	heat treatment, surface t	reatment etc.			
SI.		Experiment	ts		
No.					
		PART A			
1			of different engineering mater		
		of plain carbon steel, too	I steel, gray C.I, SG iron, Bra	ass, Bronze &	
	composites.				
2		normalizing, hardening and t			
	Metallographic specimens of heat treated components to be supplied and students should report				
		cooled, water cooled, air cool	-		
		distinguish the phase changed	ges in a heat treated specimer	n compared to	
2	untreated specimen.	o'a llavda aca taata an watraat			
3			ed and heat treated specimens.	•	
4		and weided components usi law detection	ng Non-destructive tests like:		
	· ·	ack detection			
		ation testing.			
	c) bye penetra	PART B			
5	Tensile shear and compre		um and cast iron specimens	using Universa	
5	Testing Machine		uni and cast non specificity	using oniverse	
6	Torsion Test on steel bar.				
7	Bending Test on steel and w	rood specimens			
8	Izod and Charpy Tests on M	•			
9			ous materials under different p	arameters.	
10	-		um and cast iron specimens		
-	Testing Machine			0	
11	Fatigue Test (demonstration	n only).			
Cour	se Outcomes: At the end of t	he course, the student will be	able to:		
	CO1: Acquire experimentatio	n skills in the field of material	testing.		
C	02: Develop theoretical unde	erstanding of the mechanical	properties of materials by perfo	orming	
	riments.	-	, , , ,	-	
		analyse a material failure and	d determine the failure inducing	g agent/s.	
	CO4: Apply the knowledge of				
			eas. naterials for various industrial a	applications	
	cos. onderstand now to imp				

Conduct of Practical Examination:

1. All laboratory experiments are to be included for practical examination.

2. Breakup of marks and the instructions printed on the cover page of answer script to be strictly adhered by the examiners.

3. Students can pick one experiment from the questions lot prepared by the examiners. Scheme of Examination:

ONE question from part -A: 30 Marks ONE question from part -B: 50 Marks Viva -Voice: 20 Marks Total: 100 Marks

		B. E. MECHANICAL ENG	-	
	Choice Based Cr		come Based Education (OBE)	
	МЕСН	SEMESTER – III NICAL MEASUREMENTS AN		
Cours	se Code	18MEL37B/47B	CIE Marks	40
	ning Hours/Week (L:T:P)	0:2:2	SEE Marks	60
Credit		02	Exam Hours	03
	e Learning Objectives:	02	Examinedis	00
•	experiments. To illustrate the use of var	al concepts taught in Mechan ious measuring tools & meas techniques of various measu		y through
SI. No.		Experimen	ts	
		PART A		
1	Calibration of Pressure Gau			
2	Calibration of Thermocouple	-		
3	Calibration of LVDT			
4	Calibration of Load cell			
5	Determination of modulus of	f elasticity of a mild steel spe	ecimen using straingauges.	
-		PART B		
6	Measurements using Optica	l Projector / Tool makers' Mi	croscope.	
7		Sine Centre / Sine bar / bev		
8				
9				
10		ead parameters using two wi	re or three-wire methods.	
11		ughness using Tally Surf/Me		
12	Measurement of gear tooth	profile using gear tooth Verr	nier/Gear tooth micrometer	
13	Calibration of Micrometer u	sing slip gauges		
14	Measurement using Optical	Flats		
Cours	e Outcomes: At the end of the	ne course, the student will b	e able to:	
C	CO1: Understand Calibration	of pressure gauge, thermoco	uple, LVDT, load cell, micrometr	e.
C	CO2: Apply concepts of Meas	urement of angle using Sine	e Centre/ Sine Bar/ Bevel Protra	ctor, alignmen
ι	using Autocollimator/ Roller s	et.		
C	CO3: Demonstrate measurem	ents using Optical Projector/	Tool maker microscope, Optical	flats.
	CO4: Analyse tool forces using			
			Nire method, gear tooth profile	using gear
-	tooth Vernier/Gear toot	-		
c	CO6: Understand the concept		roughness	
			Toughness.	
	uct of Practical Examination:		ramination	
	laboratory experiments are t eakup of marks and the instru	-	bage of answer script to be strict	ly adhered by
	examiners.			i, autorea by
	idents can pick one experime	nt from the questions lot pre	pared by the examiners.	
	me of Examination:			
ONE o	question from part -A: 30	Marks		
ONE	question from part -B: 50	Marks		
	Viva -Voice: 20 N			
	Total: 100 N	larks		

		redit System (CBCS) and Outco SEMESTER – III			
	V	VORKSHOP AND MACHINE SH	OP PRACTICE		
Cour	se Code	18MEL38A/48A	CIE Marks	40	
Teac	hing Hours/Week (L:T:P)	0:2:2	SEE Marks	60	
Cred	its	02	Exam Hours	03	
Cour	se Learning Objectives:				
•	 To guide students to use f 	itting tools to perform fitting o	operations.		
•	 To provide an insight to d 	fferent machine tools, accesso	pries and attachments.		
•		ng and machining operations t			
•	-	s and expose students to shop			
•	 To educate students about 	t ethical, environmental and sa	afety standards.		
		Experiments	5		
SI.		PART A			
No					
1	Preparation of at least two	fitting joint models by proficier	nt handling and application o	f hand tools- V-	
	block, marking gauge, files,	hack saw drills etc.			
		PART B			
2		els on lathe involving - Plain			
	cutting, Facing, Knurling, Drilling, Boring, Internal Thread cutting and Eccentric turning.				
	Exercises should include sel	ection of cutting parameters a	nd cutting time estimation.		
		PART C			
3	Cutting of V Groove/ doveta	ail / Rectangular groove using a	a shaper.		
	Cutting of Gear Teeth using	-			
	Exercises should include sel	ection of cutting parameters a			
	1	PART D (DEMONSTRATIO			
	-	f power tools like power dri			
	1	luction air tools, wood cutter, o		neering.	
		he course, the student will be			
		s, understand operational sym	-	•	
(ccording to drawings using han	id tools- V-block, marking gal	ige, files, hack	
	saw, drills etc.	s of lathe, shaping and milling	machines and various access	orios and	
,	attachments used.	s of lattic, shaping and mining	inacimies and various access	ones and	
(rs like cutting speed, feed, dept	th of cut, and tooling for vari	ous machining	
	operations.				
(-	ng operations such as plain tur	ning, taper turning, step turr	ning, thread	
•		internal thread cutting, eccent			
		ations such as plain shaping, in			
		· · · · · · · · · · · · · · · · · · ·			
	luct of Practical Examination				
Cond	duct of Practical Examination		mination		
Cond 1. Al	l laboratory experiments are	to be included for practical exa		ctly adhered by	
Cond 1. Al 2. Br	l laboratory experiments are eakup of marks and the instru			ctly adhered by	
Cond 1. Al 2. Br th	l laboratory experiments are eakup of marks and the instru e examiners.	to be included for practical exa	age of answer script to be stri	ctly adhered by	

Scheme of Examination:	
One Model from Part-A or Part-C:	30 Marks
One Model from Part-B:	50 Marks
Viva – Voce:	20 Marks
TOTAL:	100 Marks

	SEMESTER -					
	FOUNDRY, FORGING AN					
Course Code	18MEL38B/48B	CIE Marks	40			
Feaching Hours/Week		SEE Marks	60			
Credits	02	Exam Hours	03			
 To provide a equipment. 	insight into different sand preparatio n insight into different forging to ining to students to enhance their pra	ols and equipment and arc w	-			
SI. No	Experin					
	PART	ΓΑ				
1 Testing of Mold	ing sand and Core sand.					
-	and specimens and conduction of th	e following tests:				
-	Shear and Tensile tests on Universal	-				
2. Permeability		-				
3. Sieve Analysis	3. Sieve Analysis to find Grain Fineness Number (GFN) of Base Sand					
4. Clay content of	4. Clay content determination on Base Sand.					
Welding Practic	Welding Practice:					
Use of Arc weld	ing tools and welding equipment					
	velded joints using Arc Welding equip	ment				
L-Joint, T-Joint,	Butt joint, V-Joint, Lap joints on M.S. f	lats				
	PART	ГВ				
2 Foundry Practic	e:					
Use of foundry	tools and other equipment for Prepa	ration of molding sand mixture.				
-	green sand molds kept ready for pou	-				
1. Using tv	vo molding boxes (hand cut molds).					
2. Using pa	atterns (Single piece pattern and Split	pattern).				
	rating core in the mold.(Core boxes).					
-	ion of one casting (Aluminium or cast	iron-Demonstration only)				
	PAR					
3 Forging Operat	tions: Use of forging tools and other					
	length of the raw material required to		scale loss.			
	imum three forged models involving					
	the end of the course, the student wi					
			ensile, shear an			
	ests using Universal sand testing mac		,			
	skills in determining permeability, o		Number of bee			
	skins in determining permeability, (Liay Content and Grain Filleness				
sands.						
 Demonstrate 	skills in preparation of forging m	nodels involving upsetting, draw	ving and bending			
operations						
Conduct of Practical E						
1. All laboratory exper	iments are to be included for practica					
2. Breakup of marks ar	nd the instructions printed on the cov	er page of answer script to be str	ictly adhered by			
2. Breakup of marks an the examiners.	nd the instructions printed on the cov ne experiment from the questions lot		ictly adhered by			

4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.

Scheme of Examination:

- One question is to be set from Part-A : 30 marks (20 marks for sand testing+ 10 Marks for welding)
- 2. One question is to be set from either Part-B or Part-C: 50 Marks
- 3. Viva Voce: 20 marks

Updated on 16.04.2020/28092020 Outcome Based	B. E. (Common to all Education (OBE) and Choic SEMESTER –II / III	e Based Credit System (CBCS)	
	Aadalitha Kanna		
Course Code	18KAK28/39/49		
Teaching Hours/Week (L:T:P)	(0:2:0)	CIE Marks	100
Credits	01		
 «zÁåyðUÀ¼À°è PÀ£Àßq PÀ£ÀßqÀ "sÁµÁ gÀZÀ£ PÀ£ÀßqÀ "sÁµÁ §gÀºÀ ªÀÄvÀÄÛ "ÉÃR£À aºÉßL "ÁªÀiÁ£Àå CfðUÀ¼ÀÄ, , ªÀÄÆr,ÀĪÀÅzÀÄ. sÁµÁAvÀgÀ ªÀÄvÀÄÛ ? 	ÀÅzÀjAzÀ DqÀ½vÀ PÀ£Àß À ¨sÁµÉAiÀÄ ªÁåPÀgÀtzÀ ÉAiÀİè£À ¤AiÀĪÀÄUÀ¼ zÀ°è PÀAqÀħgÀĪÀ zÉ JÀ¼À£ÀÄß ¥ÀjZÀ¬Ä,ÀĪÀ ÀPÁðj ªÀÄvÀÄÛ CgÉ ,ÀPÁ ¢Àæ§AzsÀ gÀZÀ£É §UÉÎ C ªÀÄvÀÄÛ ,ÁªÀiÁ£Àå PÀ£À ÀiÁrPÉÆqÀĪÀÅzÀÄ.	qÀzÀ ¥ÀjZÀAiÀÄ ªÀiÁrPÉÆc §UÉÎ CjªÀÅ ªÀÄÆr,ÀĪÀÅzÀ À£ÀÄß ¥ÀjZÀ¬Ä,ÀĪÀÅzÀÄ. ĔõÀUÀ¼ÀÄ ºÁUÀÆ CªÀÅ ÅzÀÄ. ðj ¥ÀvÀæªÀåªÀºÁgÀzÀ §UÉ ,ÀQÛ ªÀÄÆr,ÀĪÀÅzÀÄ. ،ßqÀ ºÁUÀÆ DqÀ½vÀ PÀ£ÀI	ÀÄ. UÀ¼À ¤ªÁgÀuÉ Î CjªÀÅ
CzsÁåAiÀÄ – 2 ¨sÁµÁ ¥ÀæAiÉÆ tªÁgÀuÉ. CzsÁåAiÀÄ – 3 [–] ÉÃR£À aºÉßUÀ CzsÁåAiÀÄ – 4 ¥ÀvÀæ ªÀåªÀºÁ CzsÁåAiÀÄ – 5 DqÀ½vÀ ¥ÀvÀæ CzsÁåAiÀÄ – 6 ,ÀPÁðgÀzÀ DzÉÂ CzsÁåAiÀÄ – 7 ,ÀAQë¥ÀÛ ¥Àæ CzsÁåAiÀÄ – 8 PÀ£ÀßqÀ ±À§Ý, CzsÁåAiÀÄ – 9 PÀA¥ÀÆålgï ºÁU CzsÁåAiÀÄ – 10 ¥Áj¨sÁ¶PÀ DqÀ ¥Áj¨sÁ¶PÀ ¥ÀzÀUÀ¼ÀÄ.	¼ÀÄ ªÀÄvÀÄÛ CªÀÅUÀ¼À gÀ. UÀ¼ÀÄ. ¼±À ¥ÀvÀæUÀ¼ÀÄ. §AzsÀ gÀZÀ£É (¦æ¸Éʸï gÉ ÀAUÀæºÀ. IÀÆ ªÀiÁ»w vÀAvÀæeÁÕ	G¥ÀAiÉÆÃUÀ. ÊnAUï), ¥Àæ§AzsÀ ªÀÄvÀÄl ÈÀ.	Ĵ sÁµÁAvÀgÀ.
 «zÁåyðUÀ¼À°è PÀ£Àßq PÀ£ÀßqÀ ¨sÁµÁ gÀZ ¥ÀjZÀ¬Ä,À®àqÀÄvÀÛªÉ ,ÁªÀiÁ£Àå CfðUÀ¼ÀÄ, , ªÀÄÆqÀÄvÀÛzÉ. ¨sÁµÁAvÀgÀ ªÀÄvÀÄÛ ³ 	ÀzÀ ¥ÀjZÀAiÀĪÁUÀÄvÀÛ À ¨sÁµÉAiÀÄ ªÁåPÀgÀtzÀ À£ÉAiÀİè£À ¤AiÀĪÀ¤ ÀPÁðj ªÀÄvÀÄÛ CgÉ ¸ÀPÁ ¥Àæ§AzsÀ gÀZÀ£É §UÉÎ C ªÀÄvÀÄÛ ¸ÁªÀiÁ£Àå PÀ£À	zÉ. §UÉÎ CjªÀÅ ªÀÄÆqÀÄvÀÛzf JUÀ¼ÀÄ ªÀÄvÀÄÛ [–] ÉÃRf ðj ¥ÀvÀæªÀåªÀºÁgÀzÀ §UÉ	ÈÀ a≌ÉßUÀ¼ÀÄ Î CjªÀÅ
		Ä£ÀÄß 100 CAPÀUÀ½UÉ «±	

	B. E. (Common to all	Programmes)	
Outcome Based		e Based Credit System (CBCS)	
	SEMESTER –II & III	/IV	
	Vyavaharika Kanna	ada	
Course Code	18KVK28/39/49		
Teaching Hours/Week (L:T:P)	(0:2:0)	CIE Marks	100
Credits	01		
Course Learning Objectives:			
The course will enable the stude	ents to understand Kanna	da and communicate in Kan	inada language
Table of Contents:			
Chapter - 1: Vyavaharika kannad	da — Parichava (Introducti	on to Wayaharika Kannada')
	, ,	•	
Chapter - 2: Kannada Aksharam	e i	•	
Chapter - 3: Sambhashanegaagi	• .	•	-
Chapter - 4: Kannada Grammar	in Conversations (Sambha	ashaneyalli Kannada Vyakar	ana).
Chapter - 5: Activities in Kannad	la.		
Course Outcomes:			
At the end of the course, the stud	lent will be able to understa	and Kannada and communi	cate in Kannad
language.			
¥ÀjÃPÉëAiÀÄ «zsÁ£À : ¤gÀ	AvÀgÀ DAvÀjPÀ ªÀiË®åªÀ	AiÁ¥À£À - CIE (Continuous I	nternal
Evaluation):			
		Ä£ÀÄß 100 CAPÀUÀ½UÉ «±	Àé«zÁå®AiÀÄz
	ÄvÀÄÛ ¤zÉðñÀ£ÀzÀAvÉ f		
Textbook (¥ÀoÀå¥ÀÄ,ÀÛPÀ	.): ªÁåªÀºÁjPÀ PÀ£Àß	qÀ ¥ÀoÀå ¥ÀÄ,ÀÛPÀ (\	/yavaharika
Kannada Text Book)			
,ÀÀA¥Áz	ÀPÀgÀÄ		
qÁ. J⁻ï. wªÉÅ	\\ \ äñÀ		
¥ÉÆæ. «. PÉ	ñÀªÀªÀÄÆwð		
VÀmDÀluÉ · VÀm	ÁgÁAUÀ. «+ÉéÃ+ÀégÀA	AiÀÄå vÁAwæPÀ «±Àé«z	猨Aiˀ.

	B. E. MECHANICAL ENGINEERING		
Outcome Based E	ducation (OBE) and Choice Based Cro	edit System (CBCS)	
	SEMESTER - III		
CONSTITUTION O	F INDIA, PROFESSIONAL ETHICS AND	CYBER LAW (CPC))
Course Code	18CPC39/49	CIE Marks	40
Teaching Hours/Week (L:T:P)	(1:0:0)	SEE Marks	60
Credits	01	Exam Hours	02

Course Learning Objectives: To

- know the fundamental political codes, structure, procedures, powers, and duties of Indian government institutions, fundamental rights, directive principles, and the duties of citizens
- Understand engineering ethics and their responsibilities; identify their individual roles and ethical responsibilities towards society.
- Know about the cybercrimes and cyber laws for cyber safety measures.

Module-1

Introduction to Indian Constitution: The Necessity of the Constitution, The Societies before and after the Constitution adoption. Introduction to the Indian constitution, The Making of the Constitution, The Role of the Constituent Assembly - Preamble and Salient features of the Constitution of India. Fundamental Rights and its Restriction and limitations in different Complex Situations. Directive Principles of State Policy (DPSP) and its present relevance in our society with examples. Fundamental Duties and its Scope and significance in Nation building.

Module-2

Union Executive and State Executive: Parliamentary System, Federal System, Centre-State Relations. Union Executive – President, Prime Minister, Union Cabinet, Parliament - LS and RS, Parliamentary Committees, Important Parliamentary Terminologies. Supreme Court of India, Judicial Reviews and Judicial Activism. State Executives – Governor, Chief Minister, State Cabinet, State Legislature, High Court and Subordinate Courts, Special Provisions (Articles 370.371,371J) for some States.

Module-3

Elections, Amendments and Emergency Provisions: Elections, Electoral Process, and Election Commission of India, Election Laws. Amendments - Methods in Constitutional Amendments (How and Why) and Important Constitutional Amendments. Amendments – 7,9,10,12,42,44, 61, 73,74, ,75, 86, and 91,94,95,100,101,118 and some important Case Studies. Emergency Provisions, types of Emergencies and its consequences.

Constitutional special provisions: Special Provisions for SC and ST, OBC, Women, Children and Backward Classes.

Module-4

Professional / Engineering Ethics: Scope & Aims of Engineering & Professional Ethics - Business Ethics, Corporate Ethics, Personal Ethics. Engineering and Professionalism, Positive and Negative Faces of Engineering Ethics, Code of Ethics as defined in the website of Institution of Engineers (India): Profession, Professionalism, and Professional Responsibility. Clash of Ethics, Conflicts of Interest. Responsibilities in Engineering and Engineering Standards, the impediments to Responsibility. Trust and Reliability in Engineering, IPRs (Intellectual Property Rights), Risks, Safety and liability in Engineering **Module-5**

iviodule-5

Internet Laws, Cyber Crimes and Cyber Laws: Internet and Need for Cyber Laws, Modes of Regulation of Internet, Types of cyber terror capability, Net neutrality, Types of Cyber Crimes, India and cyber law, Cyber Crimes and the information Technology Act 2000, Internet Censorship. Cybercrimes and enforcement agencies.

Course Outcomes: On completion of this course, students will be able to,

- CO1: Have constitutional knowledge and legal literacy.
- CO2: Understand Engineering and Professional ethics and responsibilities of Engineers.
- CO3: Understand the the cybercrimes and cyber laws for cyber safety measures.

Question paper pattern for SEE and CIE:

- The SEE question paper will be set for 100 marks and the marks scored by the students will proportionately be reduced to 60. The pattern of the question paper will be objective type (MCQ).
- For the award of 40 CIE marks, refer the University regulations 2018.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	ks			
1	Constitution of India, Professional Ethics and Human Rights	Shubham Singles, Charles E. Haries, and et al	Cengage Learning India	2018
2	Cyber Security and Cyber Laws	Alfred Basta and et al	Cengage Learning India	2018
Referen	ce Books			
3	Introduction to the Constitution of India	Durga Das Basu	Prentice –Hall,	2008.
4	Engineering Ethics	M. Govindarajan, S. Natarajan, V. S. Senthilkumar	Prentice – Hall,	2004

		B. E. MECHANICAL ENGINEER	-	
	Outcome Based Edu	cation (OBE) and Choice Base SEMESTER - III	ed Credit System (CB	SCS)
			1	
		ADDITIONAL MATHEMATICS		
	(A Bridge course for Lateral Er	Learning Course: Common to	•	programmos)
Course		18MATDIP31	CIE Marks	40
				-
	g Hours/Week (L:T:P)	(2:1:0)	SEE Marks	60
Credits		0	Exam Hours	03
	Learning Objectives:			
	To provide basic concepts of co		-	and integral calculus.
	To provide an insight into vector	or differentiation and first ord	ier ODE's.	
Module				
	x Trigonometry: Complex N			and amplitude of a
-	number, Argand's diagram, D	-	•	
	Algebra: Scalar and vectors. A	ddition and subtraction and	multiplication of ve	ectors- Dot and Cross
	s, problems.			
Module				
	tial Calculus: Review of eleme	-	-	
	and the tangent pedal equation		•	
	Differentiation: Euler's theore			es. Total derivatives
	tiation of composite function.	Application to Jacobians of or	der two.	
Module				
Vector I				
		of vector functions. Velocity		
•	urve. Scalar and vector point	functions. Gradient, Diverger		
•		functions. Gradient, Diverger		
•	urve. Scalar and vector point table and irrotational vector field	functions. Gradient, Diverger		
Solenoio Module	urve. Scalar and vector point table and irrotational vector field	functions. Gradient, Diverger s-Problems.	nce, Curl and Laplaci	ian (Definitions only)
Solenoid Module Integral	urve. Scalar and vector point f dal and irrotational vector field -4	functions. Gradient, Diverger s-Problems. ry integral calculus. Statement	ice, Curl and Laplaci	ian (Definitions only) lae for
Solenoid Module Integral $\sin^n x, c$	urve. Scalar and vector point f dal and irrotational vector field -4 Calculus: Review of elementar	functions. Gradient, Diverger s-Problems. ry integral calculus. Statement	ice, Curl and Laplaci	ian (Definitions only) lae for
Solenoid Module Integral $\sin^n x, c$	urve. Scalar and vector point dal and irrotational vector field -4 Calculus: Review of elementar $\cos^n x$, and $\sin^m x \times \cos^n x$ and s, problems.	functions. Gradient, Diverger s-Problems. ry integral calculus. Statement	ice, Curl and Laplaci	ian (Definitions only) lae for
Solenoid Module Integral sin ⁿ x, c integral Module	urve. Scalar and vector point dal and irrotational vector field -4 Calculus: Review of elementar $\cos^n x$, and $\sin^m x \times \cos^n x$ and s, problems.	functions. Gradient, Diverger s-Problems. Ty integral calculus. Statement d evaluation of these with stat	t of reduction formundard limits-Example	ian (Definitions only) lae for es. Double and triple
Solenoid Module Integral sin ⁿ x, c integral Module Ordinar	urve. Scalar and vector point f dal and irrotational vector field -4 Calculus: Review of elementar $\cos^n x$, and $\sin^m x \times \cos^n x$ and s, problems. -5	functions. Gradient, Diverger s-Problems. Ty integral calculus. Statement d evaluation of these with state 's): Introduction-solutions of	t of reduction formundard limits-Example	ian (Definitions only) lae for es. Double and triple st degree differentia
Solenoid Module Integral sin ⁿ x, c integral Module Ordinar equatio	urve. Scalar and vector point f dal and irrotational vector field -4 Calculus: Review of elementar $\cos^n x$, and $\sin^m x \times \cos^n x$ and s, problems. -5 y differential equations (ODE	functions. Gradient, Diverger s-Problems. Ty integral calculus. Statement d evaluation of these with state 's): Introduction-solutions of	t of reduction formundard limits-Example	ian (Definitions only) lae for es. Double and triple st degree differentia
Solenoid Module Integral $\sin^n x, c$ integral Module Ordinar equation Newton	urve. Scalar and vector point f dal and irrotational vector field -4 Calculus: Review of elementar $\cos^n x$, and $\sin^m x \times \cos^n x$ and s, problems. -5 y differential equations (ODE ns: Variable Separable method	functions. Gradient, Diverger s-Problems. Ty integral calculus. Statement d evaluation of these with state 's): Introduction-solutions of ls, exact and linear differenti	t of reduction formu ndard limits-Example f first order and fir al equations of orde	ian (Definitions only) lae for es. Double and triple st degree differentia
Solenoid Module Integral sin ⁿ x, c integral Module Ordinar equatio Newton Course	urve. Scalar and vector point f dal and irrotational vector field -4 Calculus: Review of elementar $\cos^n x$, and $\sin^m x \times \cos^n x$ and s, problems. -5 y differential equations (ODE ns: Variable Separable method 's law of cooling. Dutcomes: At the end of the co	functions. Gradient, Diverger s-Problems. Ty integral calculus. Statement d evaluation of these with stat s's): Introduction-solutions of ls, exact and linear differention purse the student will be able	t of reduction formundard limits-Example f first order and fir al equations of orde	ian (Definitions only) lae for es. Double and triple st degree differentia er one. Application to
Solenoid Module Integral sin ⁿ x, c integrals Module Ordinar equation Newton Course	urve. Scalar and vector point f dal and irrotational vector field -4 Calculus: Review of elementar $\cos^n x$, and $\sin^m x \times \cos^n x$ and s, problems. -5 y differential equations (ODE ns: Variable Separable method 's law of cooling.	functions. Gradient, Diverger s-Problems. Ty integral calculus. Statement d evaluation of these with stat s's): Introduction-solutions of ls, exact and linear differention purse the student will be able	t of reduction formundard limits-Example f first order and fir al equations of orde	ian (Definitions only) lae for es. Double and triple st degree differentia er one. Application to
Solenoid Module Integral sin ⁿ x, c integral Module Ordinar equatio Newton Course	urve. Scalar and vector point f dal and irrotational vector field -4 Calculus: Review of elementar $\cos^n x$, and $\sin^m x \times \cos^n x$ and s, problems. -5 y differential equations (ODE ns: Variable Separable method 's law of cooling. Dutcomes: At the end of the co CO1: Apply concepts of comp related area.	functions. Gradient, Diverger s-Problems. Ty integral calculus. Statement d evaluation of these with state 's): Introduction-solutions of ls, exact and linear differenti purse the student will be able plex numbers and vector alg	t of reduction formundard limits-Example f first order and fir al equations of orde to: gebra to analyze the	ian (Definitions only) lae for es. Double and triple st degree differentia er one. Application to e problems arising ir
Solenoid Module Integral sin ⁿ x, c integral Module Ordinar equation Newton Course (urve. Scalar and vector point f dal and irrotational vector field -4 Calculus: Review of elementar $\cos^n x$, and $\sin^m x \times \cos^n x$ and 5, problems. -5 y differential equations (ODE ns: Variable Separable method 's law of cooling. Dutcomes: At the end of the co CO1: Apply concepts of comp related area. CO2: Use derivatives and partic	functions. Gradient, Diverger s-Problems. Ty integral calculus. Statement d evaluation of these with state s's): Introduction-solutions of ls, exact and linear differention purse the student will be able plex numbers and vector algorithms and al derivatives to calculate rate	t of reduction formu ndard limits-Example f first order and fir al equations of orde to: gebra to analyze the	ian (Definitions only) lae for es. Double and triple st degree differentia er one. Application to e problems arising in variate functions.
Solenoid Module Integral sin ⁿ x, c integral Module Ordinar equatio Newton Course •	urve. Scalar and vector point f dal and irrotational vector field -4 Calculus: Review of elementar $\cos^n x$, and $\sin^m x \times \cos^n x$ and s, problems. -5 y differential equations (ODE ns: Variable Separable method 's law of cooling. Dutcomes: At the end of the co CO1: Apply concepts of comp related area. CO2: Use derivatives and partic CO3: Analyze position, veloci	functions. Gradient, Diverger s-Problems. Ty integral calculus. Statement d evaluation of these with state ('s): Introduction-solutions of ls, exact and linear differention ourse the student will be able olex numbers and vector algorithm al derivatives to calculate rate ty and acceleration in two	t of reduction formundard limits-Example f first order and fir al equations of orde to: gebra to analyze the of change of multiv and three dimensio	ian (Definitions only) lae for es. Double and triple st degree differentia er one. Application to e problems arising in variate functions. ons of vector valued
Solenoid Module Integral sin ⁿ x, c integral Module Ordinar equatio Newton Course (urve. Scalar and vector point i dal and irrotational vector field -4 Calculus: Review of elementar $\cos^n x$, and $\sin^m x \times \cos^n x$ and s, problems. -5 y differential equations (ODE ns: Variable Separable method 's law of cooling. Dutcomes: At the end of the co CO1: Apply concepts of comp related area. CO2: Use derivatives and partic CO3: Analyze position, veloci functions. CO4: Learn tech	functions. Gradient, Diverger s-Problems. Ty integral calculus. Statement d evaluation of these with state s's): Introduction-solutions of ls, exact and linear differention purse the student will be able plex numbers and vector algorithms and al derivatives to calculate rate	t of reduction formundard limits-Example f first order and fir al equations of orde to: gebra to analyze the of change of multiv and three dimensio	ian (Definitions only) lae for es. Double and triple st degree differentia er one. Application to e problems arising in variate functions. ons of vector valued
Solenoid Module Integral sin ⁿ x, c integral Module Ordinar equatio Newton Course (urve. Scalar and vector point is dal and irrotational vector field -4 Calculus: Review of elementar $\cos^n x$, and $\sin^m x \times \cos^n x$ and s, problems. -5 y differential equations (ODE ns: Variable Separable method 's law of cooling. Outcomes: At the end of the co CO1: Apply concepts of comp related area. CO2: Use derivatives and partia CO3: Analyze position, veloci functions. CO4: Learn tech integrals.	functions. Gradient, Diverger s-Problems. Ty integral calculus. Statement d evaluation of these with state 's): Introduction-solutions of ls, exact and linear differenti ourse the student will be able plex numbers and vector alg al derivatives to calculate rate ty and acceleration in two niques of integration includ	t of reduction formundard limits-Example f first order and fir al equations of ordet to: gebra to analyze the e of change of multivand three dimension ing the evaluation	ian (Definitions only) lae for es. Double and triple st degree differentia er one. Application to e problems arising in variate functions. ons of vector valued
Solenoid Module Integral sin ⁿ x, c integral Module Ordinar equatio Newton Course •	urve. Scalar and vector point f dal and irrotational vector field -4 Calculus: Review of elementar $\cos^n x$, and $\sin^m x \times \cos^n x$ and 5, problems. -5 y differential equations (ODE ns: Variable Separable method 's law of cooling. Dutcomes: At the end of the co CO1: Apply concepts of comp related area. CO2: Use derivatives and partic CO3: Analyze position, veloci functions. CO4: Learn tech integrals. CO5: Identify and solve first or	functions. Gradient, Diverger s-Problems. Ty integral calculus. Statement d evaluation of these with state 's): Introduction-solutions of ls, exact and linear differenti ourse the student will be able plex numbers and vector alg al derivatives to calculate rate ty and acceleration in two niques of integration includ	t of reduction formundard limits-Example f first order and fir al equations of ordet to: gebra to analyze the e of change of multivand three dimension ing the evaluation	ian (Definitions only) lae for es. Double and triple st degree differentia er one. Application to e problems arising ir variate functions. ons of vector valued
Solenoid Module Integral sin ⁿ x, c integral Module Ordinar equatio Newton Course • • • Questio	urve. Scalar and vector point f dal and irrotational vector field -4 Calculus: Review of elementar $\cos^n x$, and $\sin^m x \times \cos^n x$ and s, problems. -5 y differential equations (ODE ns: Variable Separable method 's law of cooling. Dutcomes: At the end of the co CO1: Apply concepts of comp related area. CO2: Use derivatives and partic CO3: Analyze position, veloci functions. CO4: Learn tech integrals. CO5: Identify and solve first or n paper pattern:	functions. Gradient, Diverger s-Problems. Ty integral calculus. Statement d evaluation of these with state ('s): Introduction-solutions of ls, exact and linear differenti ourse the student will be able plex numbers and vector algorithm al derivatives to calculate rate ty and acceleration in two niques of integration includ der ordinary differential equa	t of reduction formundard limits-Example f first order and fir al equations of orde to: gebra to analyze the of change of multiv and three dimension ing the evaluation tions.	ian (Definitions only) lae for es. Double and triple st degree differentia er one. Application to e problems arising ir variate functions. ons of vector valued
Solenoid Module Integral sin ⁿ x, c integral Module Ordinar equatio Newton Course o • • Questio • Th	urve. Scalar and vector point is dal and irrotational vector field -4 Calculus: Review of elementar $\cos^n x$, and $\sin^m x \times \cos^n x$ and s, problems. -5 y differential equations (ODE ns: Variable Separable method 's law of cooling. Dutcomes: At the end of the co CO1: Apply concepts of comp related area. CO2: Use derivatives and partia CO3: Analyze position, veloci functions. CO4: Learn tech integrals. CO5: Identify and solve first or n paper pattern: ne question paper will have ten	functions. Gradient, Diverger s-Problems. Ty integral calculus. Statement d evaluation of these with state 's): Introduction-solutions of ls, exact and linear differenti purse the student will be able olex numbers and vector alg al derivatives to calculate rate ty and acceleration in two niques of integration includ der ordinary differential equal full questions carrying equal	t of reduction formundard limits-Example f first order and fir al equations of orde to: gebra to analyze the of change of multiv and three dimension ing the evaluation tions.	ian (Definitions only) lae for es. Double and triple st degree differentia er one. Application to e problems arising ir variate functions. ons of vector valued
Solenoid Module Integral sin ⁿ x, c integral Module Ordinar equatio Newton Course • • • • • • • • • • • • •	urve. Scalar and vector point f dal and irrotational vector field -4 Calculus: Review of elementar os ⁿ x, and $\sin^m x \times \cos^n x$ and s, problems. -5 y differential equations (ODE ns: Variable Separable method 's law of cooling. Dutcomes: At the end of the co CO1: Apply concepts of comp related area. CO2: Use derivatives and partic CO3: Analyze position, veloci functions. CO4: Learn tech integrals. CO5: Identify and solve first or n paper pattern: ne question paper will have ten och full question will be for 20 r	functions. Gradient, Diverger s-Problems. Ty integral calculus. Statement d evaluation of these with state 's): Introduction-solutions of ls, exact and linear differenti purse the student will be able plex numbers and vector alg al derivatives to calculate rate ty and acceleration in two niques of integration includ der ordinary differential equal full questions carrying equal marks.	t of reduction formundard limits-Example f first order and fir al equations of order to: gebra to analyze the e of change of multiv and three dimension tions. marks.	ian (Definitions only) lae for es. Double and triple st degree differentia er one. Application to e problems arising in variate functions. ons of vector valued of double and triple
Solenoid Module Integral sin ⁿ x, c integral Module Ordinar equatio Newton Course • • • • • • • • • • • • •	urve. Scalar and vector point f dal and irrotational vector field -4 Calculus: Review of elementar $\cos^n x$, and $\sin^m x \times \cos^n x$ and c_s , problems. -5 y differential equations (ODE ns: Variable Separable method 's law of cooling. Dutcomes: At the end of the co CO1: Apply concepts of comp related area. CO2: Use derivatives and partic CO3: Analyze position, veloci functions. CO4: Learn tech integrals. CO5: Identify and solve first or n paper pattern: ne question paper will have ten inch full question will be for 20 r	functions. Gradient, Diverger s-Problems. Ty integral calculus. Statement d evaluation of these with state S's): Introduction-solutions of ls, exact and linear differenti ourse the student will be able blex numbers and vector alg al derivatives to calculate rate ty and acceleration in two niques of integration includ der ordinary differential equal full questions carrying equal narks. with a maximum of four sub-	t of reduction formundard limits-Example f first order and fir al equations of order to: gebra to analyze the e of change of multiv and three dimension tions. marks. questions) from eac	ian (Definitions only) lae for es. Double and triple st degree differentia er one. Application to e problems arising ir variate functions. ons of vector valued of double and triple
Solenoid Module Integral sin ⁿ x, c integral Module Ordinar equatio Newton Course • • • • • • • • • • • • •	urve. Scalar and vector point f dal and irrotational vector field -4 Calculus: Review of elementar os ⁿ x, and $\sin^m x \times \cos^n x$ and s, problems. -5 y differential equations (ODE ns: Variable Separable method 's law of cooling. Dutcomes: At the end of the co CO1: Apply concepts of comp related area. CO2: Use derivatives and partic CO3: Analyze position, veloci functions. CO4: Learn tech integrals. CO5: Identify and solve first or n paper pattern: ne question paper will have ten och full question will be for 20 r	functions. Gradient, Diverger s-Problems. Ty integral calculus. Statement d evaluation of these with state ('s): Introduction-solutions of ls, exact and linear differentia burse the student will be able blex numbers and vector algorithm al derivatives to calculate rate ty and acceleration in two niques of integration includ der ordinary differential equal full questions carrying equal narks. <u>with a maximum of four sub-</u> Name of the	t of reduction formundard limits-Example f first order and fir al equations of orde to: gebra to analyze the e of change of multiv and three dimension tions. marks. questions) from eac Name of the	ian (Definitions only) lae for es. Double and triple st degree differentia er one. Application to e problems arising in variate functions. ons of vector valued of double and triple
Solenoid Module Integral sin ⁿ x, c integral Module Ordinar equatio Newton Course • • • Questio • Th Sl. No.	urve. Scalar and vector point is dal and irrotational vector field -4 Calculus: Review of elementar $\cos^n x$, and $\sin^m x \times \cos^n x$ and s, problems. -5 y differential equations (ODE ns: Variable Separable method 's law of cooling. Dutcomes: At the end of the co CO1: Apply concepts of comp related area. CO2: Use derivatives and partia CO3: Analyze position, veloci functions. CO4: Learn tech integrals. CO5: Identify and solve first or n paper pattern: ne question paper will have ten och full question will be for 20 r here will be two full questions (Title of the Book	functions. Gradient, Diverger s-Problems. Ty integral calculus. Statement d evaluation of these with state S's): Introduction-solutions of ls, exact and linear differenti ourse the student will be able blex numbers and vector alg al derivatives to calculate rate ty and acceleration in two niques of integration includ der ordinary differential equal full questions carrying equal narks. with a maximum of four sub-	t of reduction formundard limits-Example f first order and fir al equations of order to: gebra to analyze the e of change of multiv and three dimension tions. marks. questions) from eac	ian (Definitions only) lae for es. Double and triple st degree differentia er one. Application to e problems arising ir variate functions. ons of vector valued of double and triple
Solenoid Module Integral sin ⁿ x, c integral Module Ordinar equatio Newton Course • • • • • • • • • • • • •	urve. Scalar and vector point f dal and irrotational vector field -4 Calculus: Review of elementar os ⁿ x, and $\sin^m x \times \cos^n x$ and s, problems. -5 y differential equations (ODE ns: Variable Separable method 's law of cooling. Dutcomes: At the end of the co CO1: Apply concepts of comp related area. CO2: Use derivatives and partic CO3: Analyze position, veloci functions. CO4: Learn tech integrals. CO5: Identify and solve first or n paper pattern: ne question paper will have ten och full question will be for 20 r here will be two full questions (Title of the Book	functions. Gradient, Diverger s-Problems. Ty integral calculus. Statement d evaluation of these with state S's): Introduction-solutions of ls, exact and linear differentia purse the student will be able blex numbers and vector algon al derivatives to calculate rate ty and acceleration in two niques of integration includ der ordinary differential equal full questions carrying equal marks. with a maximum of four sub- Name of the Author/s	t of reduction formundard limits-Example f first order and fir al equations of order to: gebra to analyze the e of change of multiv and three dimension tions. marks. questions) from eac Name of the Publisher	ian (Definitions only) lae for es. Double and triple st degree differentia er one. Application to e problems arising in variate functions. ons of vector valued of double and triple th module. Edition and Year
Solenoid Module Integral sin ⁿ x, c integral Module Ordinar equatio Newton Course • • • Questio • Th Sl. No.	urve. Scalar and vector point is dal and irrotational vector field -4 Calculus: Review of elementar $\cos^n x$, and $\sin^m x \times \cos^n x$ and s, problems. -5 y differential equations (ODE ns: Variable Separable method 's law of cooling. Dutcomes: At the end of the co CO1: Apply concepts of comp related area. CO2: Use derivatives and partia CO3: Analyze position, veloci functions. CO4: Learn tech integrals. CO5: Identify and solve first or n paper pattern: ne question paper will have ten och full question will be for 20 r here will be two full questions (Title of the Book	functions. Gradient, Diverger s-Problems. Ty integral calculus. Statement d evaluation of these with state S's): Introduction-solutions of ls, exact and linear differentia purse the student will be able blex numbers and vector algon al derivatives to calculate rate ty and acceleration in two niques of integration includ der ordinary differential equal full questions carrying equal marks. with a maximum of four sub- Name of the Author/s	t of reduction formundard limits-Example f first order and fir al equations of orde to: gebra to analyze the e of change of multiv and three dimension tions. marks. questions) from eac Name of the	ian (Definitions only) lae for es. Double and triple st degree differentia er one. Application to e problems arising in variate functions. ons of vector valued of double and triple

Referen	ce Books			
1	Advanced Engineering	E. Kreyszig	John Wiley &	10 th Edition, 2015
	Mathematics		Sons	
2	Engineering Mathematics Vol.I	RohitKhurana	Cengage	2015
			Learning	

	B. E. MECHANICAL ENGINEERING		
Outcome Based Edu	ucation (OBE) and Choice Based Cr	edit System (CBCS	5)
	SEMESTER - IV		
COMPLEX ANA	LYSIS, PROBABILITY AND STATISTI	CAL METHODS	
[As per ((Common to all programmes) hoice Based Credit System (CBCS)	schemel	
Course Code	18MAT41	CIE Marks	40
Teaching Hours/Week (L:T:P)	(2:2:0)	SEE Marks	60
Credits	03	Exam Hours	03
Course Learning Objectives:			
	lications of complex variables, con antum mechanics, heat conductior		nd special functions
distribution occurring in digita	bution of discrete, continuous rai Il signal processing, design enginee		
Module-1			
Calculus of complex functions: Re			
differentiability. Analytic functions:	Cauchy-Riemann equations in	Cartesian and	polar forms and
consequences. Construction of analytic functions: M	ilne-Thomson mothed Broblems		
Module-2			
Conformal transformations: Introduct	tion Discussion of transformation	$s \cdot w = Z^2 w = e^Z$	w = z +
$\frac{1}{z}$, $(z \neq 0)$.Bilinear transformations- P		5.W – 2 ,W – C ,	<i>w</i> – 2 1
Z			intogral formula
Complex integration: Line integral of and problems.	a complex function-Cauchy's theor	em and Cauchy's	integral formula
and problems. Module-3	· · · · · ·		
and problems. Module-3 Probability Distributions: Review of probability mass/density functions. E	basic probability theory. Random Binomial, Poisson, exponential and	variables (discret	e and continuous),
and problems. Module-3 Probability Distributions: Review of probability mass/density functions. E derivation for mean and standard dev	basic probability theory. Random Binomial, Poisson, exponential and	variables (discret	e and continuous),
and problems. Module-3 Probability Distributions: Review of probability mass/density functions. E derivation for mean and standard dev Module-4	basic probability theory. Random Binomial, Poisson, exponential and viation)-Illustrative examples.	variables (discret normal distribut	e and continuous), ions- problems (No
and problems. Module-3 Probability Distributions: Review of probability mass/density functions. E derivation for mean and standard dev Module-4 Statistical Methods: Correlation and r	basic probability theory. Random Binomial, Poisson, exponential and viation)-Illustrative examples. egression-Karl Pearson's coefficier	variables (discret normal distribut	e and continuous), ions- problems (No
and problems. Module-3 Probability Distributions: Review of probability mass/density functions. E derivation for mean and standard dev Module-4 Statistical Methods: Correlation and r -problems. Regression analysis- lines of	basic probability theory. Random Binomial, Poisson, exponential and viation)-Illustrative examples. regression-Karl Pearson's coefficier of regression –problems.	variables (discret normal distributi nt of correlation an	e and continuous), ions- problems (No
and problems. Module-3 Probability Distributions: Review of probability mass/density functions. E derivation for mean and standard dev Module-4 Statistical Methods: Correlation and r -problems. Regression analysis- lines of Curve Fitting: Curve fitting by the met	basic probability theory. Random Binomial, Poisson, exponential and viation)-Illustrative examples. regression-Karl Pearson's coefficier of regression –problems. hod of least squares- fitting the cu	variables (discret normal distributi nt of correlation an	e and continuous), ions- problems (No
and problems. Module-3 Probability Distributions: Review of probability mass/density functions. E derivation for mean and standard dev Module-4 Statistical Methods: Correlation and r -problems. Regression analysis- lines of	basic probability theory. Random Binomial, Poisson, exponential and viation)-Illustrative examples. regression-Karl Pearson's coefficier of regression –problems. hod of least squares- fitting the cu	variables (discret normal distributi nt of correlation an	e and continuous), ions- problems (No
and problems. Module-3 Probability Distributions: Review of probability mass/density functions. E derivation for mean and standard dev Module-4 Statistical Methods: Correlation and r -problems. Regression analysis- lines of Curve Fitting: Curve fitting by the method $y = ax + b, y = ax^b andy = ax^2 + b$	basic probability theory. Random Binomial, Poisson, exponential and viation)-Illustrative examples. regression-Karl Pearson's coefficier of regression –problems. hod of least squares- fitting the cu bx + c.	variables (discret normal distributi nt of correlation an rves of the form-	e and continuous), ions- problems (No d rank correlation
and problems. Module-3 Probability Distributions: Review of probability mass/density functions. E derivation for mean and standard dev Module-4 Statistical Methods: Correlation and r -problems. Regression analysis- lines of Curve Fitting: Curve fitting by the met $y = ax + b, y = ax^b andy = ax^2 + b$ Module-5 Joint probability distribution: Joint F and covariance. Sampling Theory: Introduction to sam hypothesis for means, student's t-dist	basic probability theory. Random Binomial, Poisson, exponential and viation)-Illustrative examples. regression-Karl Pearson's coefficien of regression –problems. shod of least squares- fitting the cu px + c. Probability distribution for two dise mpling distributions, standard error	variables (discret normal distributi at of correlation an rves of the form- screte random var	e and continuous), ions- problems (No id rank correlation riables, expectation e-II errors. Test of
and problems. Module-3 Probability Distributions: Review of probability mass/density functions. E derivation for mean and standard dev Module-4 Statistical Methods: Correlation and r -problems. Regression analysis- lines of Curve Fitting: Curve fitting by the met $y = ax + b, y = ax^b andy = ax^2 + b$ Module-5 Joint probability distribution: Joint F and covariance. Sampling Theory: Introduction to sam hypothesis for means, student's t-dist Course Outcomes:	basic probability theory. Random Binomial, Poisson, exponential and viation)-Illustrative examples. egression-Karl Pearson's coefficien of regression –problems. hod of least squares- fitting the cu px + c. Probability distribution for two dis mpling distributions, standard error stribution, Chi-square distribution	variables (discret normal distributi at of correlation an rves of the form- screte random var	e and continuous), ions- problems (No id rank correlation riables, expectation e-II errors. Test of
and problems. Module-3 Probability Distributions: Review of probability mass/density functions. E derivation for mean and standard dev Module-4 Statistical Methods: Correlation and r -problems. Regression analysis- lines of Curve Fitting: Curve fitting by the met $y = ax + b, y = ax^b andy = ax^2 + b$ Module-5 Joint probability distribution: Joint F and covariance. Sampling Theory: Introduction to sar hypothesis for means, student's t-dist Course Outcomes: At the end of the course the student w	basic probability theory. Random Binomial, Poisson, exponential and viation)-Illustrative examples. regression-Karl Pearson's coefficien of regression –problems. shod of least squares- fitting the cu px + c. Probability distribution for two dis mpling distributions, standard error stribution, Chi-square distribution will be able to:	variables (discret normal distribution at of correlation an rves of the form- screte random var or, Type-I and Typ as a test of goo	e and continuous), ions- problems (No ad rank correlation riables, expectation e-II errors. Test of dness of fit.
and problems. Module-3 Probability Distributions: Review of probability mass/density functions. E derivation for mean and standard dev Module-4 Statistical Methods: Correlation and r -problems. Regression analysis- lines of Curve Fitting: Curve fitting by the met $y = ax + b, y = ax^b andy = ax^2 + b$ Module-5 Joint probability distribution: Joint F and covariance. Sampling Theory: Introduction to sam hypothesis for means, student's t-dist Course Outcomes: At the end of the course the student w • Use the concepts of analytic electromagnetic field theory.	basic probability theory. Random Binomial, Poisson, exponential and viation)-Illustrative examples. egression-Karl Pearson's coefficien of regression –problems. hod of least squares- fitting the cu bx + c. Probability distribution for two dis mpling distributions, standard error stribution, Chi-square distribution vill be able to: c function and complex potentia	variables (discret normal distributi at of correlation an rves of the form- screte random var or, Type-I and Typ as a test of goo	e and continuous), ions- problems (No id rank correlation riables, expectation e-II errors. Test of dness of fit.
and problems. Module-3 Probability Distributions: Review of probability mass/density functions. E derivation for mean and standard dev Module-4 Statistical Methods: Correlation and r -problems. Regression analysis- lines of Curve Fitting: Curve fitting by the met $y = ax + b, y = ax^b andy = ax^2 + b$ Module-5 Joint probability distribution: Joint F and covariance. Sampling Theory: Introduction to sar hypothesis for means, student's t-dist Course Outcomes: At the end of the course the student w • Use the concepts of analytic electromagnetic field theory. • Utilize conformal transform visualization and image proce	basic probability theory. Random Binomial, Poisson, exponential and viation)-Illustrative examples. regression-Karl Pearson's coefficien of regression –problems. shod of least squares- fitting the cu bx + c. Probability distribution for two dis mpling distributions, standard error stribution, Chi-square distribution vill be able to: c function and complex potentia ation and complex integral aris ssing.	variables (discret normal distributi at of correlation an rves of the form- crete random var or, Type-I and Typ as a test of goo as a test of goo	e and continuous), ions- problems (No id rank correlation riables, expectation e-II errors. Test of dness of fit.
and problems. Module-3 Probability Distributions: Review of probability mass/density functions. E derivation for mean and standard dev Module-4 Statistical Methods: Correlation and r -problems. Regression analysis- lines of Curve Fitting: Curve fitting by the met $y = ax + b, y = ax^b andy = ax^2 + b$ Module-5 Joint probability distribution: Joint F and covariance. Sampling Theory: Introduction to sam hypothesis for means, student's t-dist Course Outcomes: At the end of the course the student w • Use the concepts of analytic electromagnetic field theory. • Utilize conformal transform visualization and image proce	basic probability theory. Random Binomial, Poisson, exponential and viation)-Illustrative examples. egression-Karl Pearson's coefficien of regression – problems. hod of least squares- fitting the cu bx + c. Probability distribution for two dis mpling distributions, standard error stribution, Chi-square distribution vill be able to: c function and complex potentia ation and complex integral aris	variables (discret normal distributi at of correlation an rves of the form- crete random var or, Type-I and Typ as a test of goo as a test of goo	e and continuous), ions- problems (No id rank correlation riables, expectation e-II errors. Test of dness of fit.
and problems. Module-3 Probability Distributions: Review of probability mass/density functions. E derivation for mean and standard dev Module-4 Statistical Methods: Correlation and r -problems. Regression analysis- lines of Curve Fitting: Curve fitting by the met $y = ax + b, y = ax^b andy = ax^2 + b$ Module-5 Joint probability distribution: Joint F and covariance. Sampling Theory: Introduction to sar hypothesis for means, student's t-dist Course Outcomes: At the end of the course the student w • Use the concepts of analytic electromagnetic field theory. • Utilize conformal transform visualization and image proce • Apply discrete and continuous engineering field.	basic probability theory. Random Binomial, Poisson, exponential and viation)-Illustrative examples. regression-Karl Pearson's coefficien of regression –problems. shod of least squares- fitting the cu bx + c. Probability distribution for two dis mpling distributions, standard error stribution, Chi-square distribution vill be able to: c function and complex potentia ation and complex integral aris ssing.	variables (discret normal distribution at of correlation an rves of the form- screte random var or, Type-I and Typ as a test of goo as a test of goo as a test of goo as a test of goo	e and continuous), ions- problems (No id rank correlation riables, expectation e-II errors. Test of dness of fit. problems arising in theory, fluid flow models arising in
and problems. Module-3 Probability Distributions: Review of probability mass/density functions. Ed derivation for mean and standard dev Module-4 Statistical Methods: Correlation and r -problems. Regression analysis- lines of Curve Fitting: Curve fitting by the met $y = ax + b, y = ax^b andy = ax^2 + b$ Module-5 Joint probability distribution: Joint F and covariance. Sampling Theory: Introduction to sar hypothesis for means, student's t-dist Course Outcomes: At the end of the course the student w • Use the concepts of analytic electromagnetic field theory. • Utilize conformal transform visualization and image proce • Apply discrete and continuous engineering field. • Make use of the correlation an statistical data.	basic probability theory. Random Binomial, Poisson, exponential and viation)-Illustrative examples. egression-Karl Pearson's coefficient of regression – problems. hod of least squares- fitting the cu bx + c. Probability distribution for two dis mpling distributions, standard error stribution, Chi-square distribution vill be able to: c function and complex potentia ation and complex integral aris ssing. s probability distributions in analyz	variables (discret normal distribution at of correlation an rves of the form- screte random var or, Type-I and Type as a test of goo as a test of goo as a test of goo as a test of goo as a test of goo	e and continuous), ions- problems (No d rank correlation d rank correlation e-ll errors. Test of dness of fit. problems arising in theory, fluid flow models arising in model for the

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	ks	·		
1	Advanced Engineering Mathematics	E. Kreyszig	John Wiley & Sons	10 th Edition,2016
2	Higher Engineering Mathematics	B. S. Grewal	Khanna Publishers	44 th Edition, 2017
3	Engineering Mathematics	Srimanta Pal et al	Oxford University Press	3 rd Edition,2016
Referen	ce Books			
1	Advanced Engineering Mathematics	C. Ray Wylie, Louis C.Barrett	McGraw-Hill	6 th Edition 1995
2	Introductory Methods of Numerical Analysis	S.S.Sastry	Prentice Hall of India	4 th Edition 2010
3	Higher Engineering Mathematics	B. V. Ramana	McGraw-Hill	11 th Edition,2010
4	A Text Book of Engineering Mathematics	N. P. Bali and Manish Goyal	Laxmi Publications	2014
Web lin	ks and Video Lectures:			
1. http:/	//nptel.ac.in/courses.php?discipl	inelD=111		
2. http:/	//www.class-central.com/subjec	t/math(MOOCs)		
3. http:/	//academicearth.org/			

4. VTU EDUSAT PROGRAMME - 20

Choice Based Cr	B. E. MECHANICAL ENG edit System (CBCS) and Ou	GINEERING Itcome Based Education (OBE)	
	SEMESTER - IN	v	
	APPLIED THERMODY	NAMICS	
Course Code	18ME42	CIE Marks	40
Teaching Hours /Week (L:T:P)	3:2:0	SEE Marks	60
Credits	04	Exam Hours	03
Course Learning Objectives:			
 processes and cycles. To understand fundament Compare Actual, Fuel-Air a To study Combustion in S power. To know the concepts of Frictional Power and efficie To understand theory and To understand the concept 	als of I. C. Engines, Const nd Air standard cycle Perfo I and CI engines and its testing of I. C. Engines a encies. performance Calculation of s related to Refrigeration a chrometric Charts, Psychro o, Diesel, Dual and Stirlin	controlling factor in order to and methods to estimate Ind Positive displacement compre nd Air conditioning. <u>metric processes, human comf</u> ng cycles, p-v and T -s diag	of an Engine and extract maximum icated, Brake and essor.
I.C.Engines: Classification of IC e affecting detonation, Performance and Alternate Fuels. Module-2	e analysis of I.C Engines, He	eat balance, Morse test, IC En	gine fuels, Ratings
Gas power Cycles: Gas turbine (Bracooling and reheating in gas turbine) Module-3			urbine cycle. Inter
Vapour Power Cycles: Carnot vap description, T-S diagram, analysis pressure and temperature on Rank Actual vapour power cycles. Idea	for performance. Compa ine cycle performance. I and practical regeneration	rison of Carnot and Rankine ve Rankine cycles, open and	cycles. Effects o
heaters. Reheat Rankine cycle. Cha	racteristics of an Ideal Worl	king nulu in vapour power cycle	25.
Module-4 Refrigeration Cycles: Vapour con Capacity, power required units of Refrigerants. Air cycle refrigeration refrigeration system. Pscychrometrics and Air-condition Air-conditioning Processes; Heati Adiabatic mixing of two moist air st	f refrigeration, COP, Refrig ion; reversed Carnot cycl ning Systems: Psychometric ng, Cooling, Dehumidifica	erants and their desirable pro e, reversed Brayton cycle, v properties of Air, Psychometr	operties, alternate apour absorption ic Chart, Analyzing
Module-5	ation of a study of		
Reciprocating Compressors: Operating and steady state steady lsothermal and Mechanical efficiences pressure, Inter-cooling, Minimum V	flow analysis. Effect of (encies. Multi-stage comp	Clearance and Volumetric eff	iciency. Adiabatic

Course Outcomes: At the end of the course the student will be able to:

CO1: Apply thermodynamic concepts to analyze the performance of gas power cycles.

CO2: Apply thermodynamic concepts to analyze the performance of vapour power cycles.

CO3: Understand combustion of fuels and performance of I C engines.

CO4: Understand the principles and applications of refrigeration systems.

CO5: Apply Thermodynamic concepts to determine performance parameters of refrigeration and airconditioning systems.

CO6: Understand the working principle of Air compressors and Steam nozzles, applications, relevance of air and identify methods for performance improvement.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	k/s			
1	Engineering Thermodynamics	P.K. Nag	Tata McGraw Hill	6th Edition 2018
2	Applications of Thermodynamics	V.Kadambi, T. R.Seetharam, K. B. Subramanya Kumar	Wiley Indian Private Ltd	1st Edition 2019
3	Thermodynamics	Yunus A, Cengel, Michael A Boles	Tata McGraw Hill	7th Edition
Referen	ce Books			
1	Thermodynamics for engineers	Kenneth A. Kroos and Merle C. Potter	Cengage Learning	2016
2	Principles of Engineering Thermodynamics	Michael J, Moran, Howard N. Shapiro	Wiley	8th Edition
3	An Introduction to Thermo Dynamics	Y.V.C.Rao	Wiley Eastern Ltd	2003.
4	Thermodynamics	Radhakrishnan	PHI	2nd revised edition
5	I.C Engines	Ganeshan.V	Tata McGraw Hill	4th Edi. 2012
6	I.C.Engines	M.L.Mathur& Sharma.	Dhanpat Rai& sons- India	

Choice Based Cr	B. E. MECHANICAL ENG edit System (CBCS) and Ou	INEERING tcome Based Education (OBE)			
	SEMESTER – I				
FLUID MECHANICS					
Course Code	18ME43	CIE Marks	40		
Teaching Hours /Week (L:T:P)	3:0:0	SEE Marks	60		
Credits Course Learning Objectives:	03	Exam Hours	03		
 To have a working knowled approximation. To calculate the forces exercise buoyancy. To understand the flow ch To know how velocity chara and to understand why de To discuss laminar and tur layer theory. To understand the concep To appreciate the consequand heat transfer on comp Module-1 Basics: Introduction, Properties viscosity, surface tension, capill continuum, types of fluids etc., pr law, absolute, gauge, atmospher manometers and mechanical gaug 	erted by a fluid at rest on su aracteristic and dynamics o nges and energy transfers ir signing for minimum loss of bulent flow and appreciate t of dynamic similarity and ences of compressibility in pressible flows. of fluids-mass density, we arity, vapour pressure, co ressure at a point in the sta- ic and vacuum pressures; es.	ompressibility and bulk mod atic mass of fluid, variation of pressure measurement by si	and the force of ring applications. es and torques ortant. ept of boundary modelling. fects of friction , specific gravity ulus. Concept of pressure. Pascal' mple, differentia		
Fluid Statics: Total pressure and opposing the plane surface submerged in static statics in the plane surface submerged in statics in the plane surface submerged in statics in the plane surface submerged in statics in the plane surface submerged in statics in the plane surface submerged in statics in the plane surface submerged in the plane submerged in the pla	-	zontal plane, vertical plane sul	rface and incline		
Module-2	nuiu.				
Buoyancy, center of buoyancy, me Fluid Kinematics: Velocity of flu Coordinate free form, acceleration velocity potential and Poisson's eq Module-3	id particle, types of fluid on of fluid particle, rotation uation in stream function, f	flow, description of flow, cor onal & irrotational flow, Lapl low net.	ace's equation i		
Fluid Dynamics; Introduction. Ford Integration of Euler's equation to equation. Introduction to Navier-S orifice meter, rectangular and trian Laminar and turbulent flow: Flow flow in bearings, Poiseuille equati experiment, frictional loss in pipe turbulent transition major and min Module-4	o obtain Bernoulli's equat Stokes equation. Applicatio ngular notch, pitot tube. r through circular pipe, bet on – velocity profile loss of flow. Introduction to turbu	ion, Assumptions and limitation n of Bernoulli's theorem such ween parallel plates, Power at head due to friction in viscour	ons of Bernoulli' as venturi-meter psorbed in viscou s flow. Reynolds'		
Flow over bodies: Development integral momentum equation, dra bluff bodies -flow around circular b Dimensional analysis: Introducti homogeneity, Rayleigh's method cimilitude	g on a flat plate, boundary podies and aero foils, calcul on, derived quantities, d	layer separation and its contro ation of lift and drag. imensions of physical quanti	l, streamlined and ties, dimensiona		

similitude.

Module-5

Compressible Flows: Introduction, thermodynamic relations of perfect gases, internal energy and enthalpy, speed of sound, pressure field due to a moving source, basic Equations for one-dimensional flow, stagnation and sonic properties, normal and oblique shocks.

Introduction to CFD: Necessity, limitations, philosophy behind CFD, applications.

Course Outcomes: At the end of the course the student will be able to:

CO1: Identify and calculate the key fluid properties used in the analysis of fluid behavior.

CO2: Explain the principles of pressure, buoyancy and floatation

CO3: Apply the knowledge of fluid statics, kinematics and dynamics while addressing problems of mechanical and chemical engineering.

CO4: Describe the principles of fluid kinematics and dynamics.

CO5: Explain the concept of boundary layer in fluid flow and apply dimensional analysis to form dimensionless numbers in terms of input output variables.

CO6: Illustrate and explain the basic concept of compressible flow and CFD

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Yea
Textboo	ok/s	1		I
1	A Text Book of Fluid Mechanis And Hydraulic Machines	Dr R.K Bansal	Laxmi Publishers	
2	Fluid Mechanics	F M White	McGraw Hill Publications	Eighth edition. 2016
3	Fluid Mechanics (SI Units)	Yunus A. Cengel John M.Cimbala	TataMcGraw Hill	3rd Ed.,2014.
Referer	nce Books		1	
1	Fluid Mechanics	F M White	McGraw Hill Publications	Eighth edition. 2016
2	Fundamentals of Fluid Mechanics	Munson, Young, Okiishi&Huebsch,	John Wiley Publications	7 th edition
3	Fluid Mechanics	Pijush.K.Kundu, IRAM COCHEN	ELSEVIER	3rd Ed. 2005
4	Fluid Mechanics	John F.Douglas, Janul and M.Gasiosek and john A.Swaffield	Pearson Education Asia	5th ed., 2006
5	Introduction to Fluid Mechanics	Fox, McDonald	John Wiley Publications	8 th edition.

MOOCS

Open courseware

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER – IV

	KINEMATICS OF M	IACHINES	
Course Code	18ME44	CIE Marks	40
Teaching Hours /Week (L:T:P)	3:0:0	SEE Marks	60
Credits	03	Exam Hours	03

Course Learning Objectives:

- To understand the concept of machines, mechanisms and related terminologies.
- To expose the students to various mechanisms and motion transmission elements used in Mechanical Engineering.
- To analyze a mechanism for displacement, velocity and acceleration at any point in a moving link.
- To understand the theory of cams, gears and gear trains.

Module-1

Mechanisms: Definitions: Link , types of links, joint, types of joints kinematic pairs, Constrained motion, kinematic chain, mechanism and types , degrees of freedom of planar mechanisms, Equivalent mechanisms, Groshoff's criteria and types of four bar mechanisms, , inversions of of four bar chain, slider crank chain, Doubler slider crank chain and its inversions, Grashoff's chain. Mechanisms: Quick return motion mechanisms-Drag link mechanism, Whitworth mechanism and Crank and slotted lever Mechanism. Straight line motion mechanisms, Peaucellier's mechanism and Robert's mechanism. Intermittent Motion mechanisms: Geneva wheel mechanism, Ratchet and Pawl mechanism, toggle mechanism, pantograph, condition for correct steering, Ackerman steering gear mechanism.

Module-2

Velocity and Acceleration Analysis of Mechanisms (Graphical Method): Velocity and acceleration analysis of four bar mechanism, slider crank mechanism. Mechanism illustrating Corioli's component of acceleration. Angular velocity and angular acceleration of links, velocity of rubbing. Velocity Analysis by Instantaneous Center Method: Definition, Kennedy's theorem, Determination of linear and angular velocity using instantaneous center method.

Module-3

Velocity and Acceleration Analysis of Mechanisms (Analytical Method): Velocity and acceleration analysis of four bar mechanism, slider crank mechanism using complex algebra method. Freudenstein's equation for four bar mechanism and slider crank mechanism. Function Generation for four bar mechanism.

Module-4

Cams: Classification of cams, Types of followers, Cam nomenclature, Follower motions and motion analysis, of SHM, Motion with uniform acceleration and deceleration, uniform velocity, cycloidal motion, Cam profile with offset knife edge follower, roller follower, flat faced follower.

Module-5

Spur Gears: Gear terminology, law of gearing, path of contact, arc of contact, contact ratio of spur gear. Interference in involute gears, methods of avoiding interference, condition and expressions for minimum number of teeth to avoid interference.

Gear Trains: Simple gear trains, compound gear trains. Epicyclic gear trains: Algebraic and tabular methods of finding velocity ratio of epicyclic gear trains, torque calculation in epicyclic gear trains.

Course Outcomes: At the end of the course the student will be able to:

CO1: Knowledge of mechanisms and their motion.

CO2: Understand the inversions of four bar mechanisms.

CO3: Analyse the velocity, acceleration of links and joints of mechanisms.

CO4: Analysis of cam follower motion for the motion specifications.

CO5: Understand the working of the spur gears.

CO6: Analyse the gear trains speed ratio and torque.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	ok/s			
1	Theory of Machines Kinematics and Dynamics	Sadhu Singh	Pearson	Third edition 2019
2	Mechanism and Machine Theory	G. Ambekar	РНІ	2009
Refere	nce Books			
1	Theory of Machines	Rattan S.S	Tata McGraw-Hill Publishing Company	2014
2	Mechanisms and Machines- Kinematics, Dynamics and Synthesis	Michael M Stanisic	Cengage Learning	2016

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - IV METAL CUTTING AND FORMING 18ME35A/45A Course Code CIE Marks 40 Teaching Hours /Week (L:T:P) 60 3:0:0 SEE Marks Credits 03 03 Exam Hours **Course Learning Objectives:** • To enrich the knowledge pertaining to relative motion and mechanics required for various machine tools. • To introduce students to different machine tools to produce components having different shapes and sizes. • To develop the knowledge on mechanics of machining process and effect of various parameters on machining. To acquaint with the basic knowledge on fundamentals of metal forming processes To study various metal forming processes. Module-1 Introduction to Metal cutting: Orthogonal and oblique cutting. Classification of cutting tools: single, and multipoint; tool signature for single point cutting tool. Mechanics of orthogonal cutting; chip formation, shear angle and its significance, Merchant circle diagram. Numerical problems. Cutting tool materials and applications. Introduction to basic metal cutting machine tools: Lathe- Parts of lathe machine, accessories of lathe machine, and various operations carried out on lathe. Kinematics of lathe. Turret and Capstan lathe. Module-2 Milling: Various Milling operation, classification of milling machines, Vertical & Horizontal milling, up milling & down milling. Indexing: need of indexing, simple, compound & differential indexing. Drilling: Difference between drilling, boring & reaming, types of drilling machines. Boring operations & boring machines. Shaping, Planing and Slotting machines-machining operations and operating parameters. Grinding: Grinding operation classification of grinding processes: cylindrical surface & conterless grinding Module-3 Introduction to tool wear, tool wear mechanisms, tool life equations, effect of process parameters on tool life, machinability. Cutting fluid-types and applications, surface finish, effect of machining parameters on surface finish. Economics of machining process, choice of cutting speed and feed, tool life for minimum cost and production time. Numerical problems. Module-4 MECHANICAL WORKING OF METALS Introduction to metal forming processes & classification of metal forming processes. Hot working & cold working of metals. Forging: Smith forging, drop forging & press forging. Forging Equipment, Defects in forging. Rolling: Rolling process, Angle of bite, Types of rolling mills, Variables of rolling process, Rolling defects. Drawing & Extrusion: Drawing of wires, rods & pipes, Variables of drawing process. Difference between drawing & extrusion. Various types of extrusion processes. Module-5 Sheet Metal Operations: Blanking, piercing, punching, drawing, draw ratio, drawing force, variables in drawing, Trimming, and Shearing. Bending — types of bending dies, Bending force calculation, Embossing and coining. Types of dies: Progressive, compound and combination dies. **Course Outcomes:** At the end of the course the student will be able to: CO1: Explain the construction & specification of various machine tools. CO2: Discuss different cutting tool materials, tool nomenclature & surface finish. CO3: Apply mechanics of machining process to evaluate machining time.

CO4: Analyze tool wear mechanisms and equations to enhance tool life and minimize machining cost. CO5: Understand the concepts of different metal forming processes.

CO6: Apply the concepts of design of sheet metal dies to design different dies for simple sheet metal components.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. N	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Тех	tbook/s			
1	Manufacturing Technology Vol I & II	P.N.Rao	Tata McGraw Hill Pub. Co. Ltd., New Delhi	1998
2	A textbook of Production Technology Vol I and II	Sharma, P.C.,	S. Chand & Company Ltd., New Delhi	1996
3	Manufacturing Science	Amithab Gosh &A K Malik	East-West press	2001
		Reference Bo	ooks	
3	Workshop Technology Vol. I and II	Chapman W. A. J.	Arnold Publisher New Delhi	1998
4	Elements of Manufacturing Technology Vol II,	Hajra Choudhary, S. K. and Hajra Choudhary, A. K.	Media Publishers, Bombay	1988
5	Metal Forming Handbook	Schuler	Springer Verlag Publication	
6	Metal Forming: Mechanics and Metallurgy	Hosford,WF and Caddell,R.M	Prentice Hall	1993
7	Manufacturing Engineering and Technology	Kalpakjian	Addision Wesley Congmen Pvt. Ltd.	2000
8	Production Technology	HMT		

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

	SEMESTER – IV		
	METAL CASTING AND W	ELDING	
Course Code	18ME35B/45B	CIE Marks	40
Teaching Hours /Week (L:T:P)	3:0:0	SEE Marks	60
Credits	03	Exam Hours	03

Course Learning Objectives:

- To provide adequate knowledge of quality test methods conducted on welded and cast components.
- To provide knowledge of various casting process in manufacturing.
- To provide in-depth knowledge on metallurgical aspects during solidification of metal and alloys.
- To provide detailed information about the moulding processes.
- To impart knowledge of various joining process used in manufacturing.
- To impart knowledge about behaviour of materials during welding, and the effect of process parameters in welding,

Module-1

Introduction & basic materials used in foundry:

Introduction: Definition, Classification of manufacturing processes. Metals cast in the foundry-classification, factors that determine the selection of a casting alloy.

Introduction to casting process & steps involved:

Patterns: Definition, classification, materials used for pattern, various pattern allowances and their importance.

Sand moulding: Types of base sand, requirement of base sand. Binder, Additives definition, need and types; preparation of sand moulds. Melding machines- Jolt type, squeeze type and Sand slinger.

Study of important moulding process: Green sand, core sand, dry sand, sweep mould, CO₂mould, shell mould, investment mould, plaster mould, cement bonded mould.

Cores: Definition, need, types. Method of making cores,

Concept of gating (top, bottom, parting line, horn gate) and risers (open, blind) Functions and types.

Module-2

MELTING & METAL MOLD CASTING METHODS:

Melting furnaces: Classification of furnaces, Gas fired pit furnace, Resistance furnace, Coreless induction furnace, electric arc furnace, constructional features & working principle of cupola furnace.

Casting using metal moulds: Gravity die casting, pressure die casting, centrifugal casting, squeeze casting, slush casting, thixocasting, and continuous casting processes.

Module-3

SOLIDIFICATION & NON-FERROUS FOUNDRY PRACTICE: Solidification: Definition, nucleation, solidification variables. Directional solidification-need and methods. Degasification in liquid metals-sources of gas, degasification methods.

Fettling and cleaning of castings: Basic steps involved. Sand Casting defects- causes, features and remedies. Advantages & limitations of casting process

Nonferrous foundry practice: Aluminium castings - advantages, limitations, melting of Aluminium using liftout type crucible furnace. Hardeners used, drossing, gas absorption, fluxing and flushing, grain refining, pouring temperature. Stir casting set up, procedure, uses, advantages and limitations

Module-4

Welding process: Definition, Principles, classification, application, advantages & limitations of welding. Arc welding: Principle, Metal arc welding (MAW), Flux Shielded Metal Arc Welding (FSMAW), Inert Gas Welding (TIG & MIG) Submerged Arc Welding (SAW) and Atomic Hydrogen Welding (AHW).

Special type of welding: Resistance welding principles, Seam welding, Butt welding, Spot welding and Projection welding. Friction welding, Explosive welding, Thermit welding, Laser welding and Electron beam welding.

5

Manufacturing Technology

	ALLURGICAL ASPECTS IN WELDI	NG, SOLDERING, AND	BRAZING	
Struct	ture of welds, Formation of d			ne (HAZ), Parameter
	ting HAZ. Effect of carbon cont			
stress	ses. Concept of electrodes, filler	rod and fluxes. Weldi	ng defects- detection causes	& remedy.
Solde	ering, brazing, gas welding: So	oldering, Brazing, Ga	s Welding: Principle, oxy-Ac	etylene welding, oxy
hydro	ogen welding, air-acetylene weld	ling, Gas cutting, pow	der cutting.	
-	ction methods: Methods use			
	escent particle, ultrasonic. Radio	<u> </u>		ection.
	se Outcomes: At the end of the			
C	O1: Describe the casting process	s and prepare differer	nt types of cast products.	
C	O2: Acquire knowledge on Patte	ern, Core, Gating, Rise	r system and to use Jolt, Sque	eze, Sand Slinger
	moulding machines.			
C	O3: Compare the Gas fired pit, F	Resistance, Coreless, E	Electrical and Cupola Metal Fu	rnaces.
C	O4: Compare the Gravity, Press	ure die, Centrifugal, S	queeze, slush and Continuous	Metal mould
Ca	astings.			
	O5: Understand the Solidificatio	n process and Casting	g of Non-Ferrous Metals.	
	O6: Describe the Metal Arc, TIG			rocesses etc. used in
	nanufacturing.			
	07: Describe methods for the qu	uality accurance of co	mononte made of casting an	d joining process
		dancy assurance of co	inponents made of casting an	u joining process
	tion paper pattern:		the entrol meaning	
	The question paper will have te		ing equal marks.	
	Each full question will be for 20 There will be two full questions		four sub questions) from eac	h modulo
	Each full question will have sub			in mouule.
	The students will have to answe		-	m each module
•		· · · · · · · · · · · · · · · · · · ·	sciecting one run question no	
51		Name of the		
	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
No.		Name of the Author/s	Name of the Publisher	
No. Textb	Title of the Book pook/s Principles of metal casting		Name of the Publisher	
No. Fextb	pook/s	Author/s		Edition and Year
No. Textb	pook/s	Author/s Rechard W.	Tata McGraw Hill	Edition and Year
SI. No. Textb 1	pook/s	Author/s Rechard W. Heine, Carl R.	Tata McGraw Hill	Edition and Year
No. Textb	pook/s	Author/s Rechard W. Heine, Carl R. Loper Jr., Philip C.	Tata McGraw Hill	Edition and Year
No. Textb 1 2	Principles of metal casting Manufacturing Process-I	Author/s Rechard W. Heine, Carl R. Loper Jr., Philip C. Rosenthal	Tata McGraw Hill Education Private Limited Sapna Book House,	Edition and Year 1976 5th Revised Edition 2009.
No. Fextb 1	Principles of metal casting Manufacturing Process-I Manufacturing Technology-	Author/s Rechard W. Heine, Carl R. Loper Jr., Philip C. Rosenthal Dr. K.	Tata McGraw Hill Education Private Limited	Edition and Year
No. Fextb 1	pook/s Principles of metal casting Manufacturing Process-I Manufacturing Technology- Foundry, Forming and	Author/s Rechard W. Heine, Carl R. Loper Jr., Philip C. Rosenthal Dr. K. Radhakrishna	Tata McGraw Hill Education Private Limited Sapna Book House,	Edition and Year 1976 5th Revised Editio 2009.
No. Γextb 1 2 3	pook/s Principles of metal casting Manufacturing Process-I Manufacturing Technology- Foundry, Forming and Welding	Author/s Rechard W. Heine, Carl R. Loper Jr., Philip C. Rosenthal Dr. K. Radhakrishna	Tata McGraw Hill Education Private Limited Sapna Book House,	Edition and Year 1976 5th Revised Edition 2009.
No. Fextb 1 2 3 Refer	prook/s Principles of metal casting Manufacturing Process-I Manufacturing Technology- Foundry, Forming and Welding rence Books	Author/s Rechard W. Heine, Carl R. Loper Jr., Philip C. Rosenthal Dr. K. Radhakrishna P.N.Rao	Tata McGraw Hill Education Private Limited Sapna Book House, Tata McGraw Hill	Edition and Year 1976 5th Revised Edition 2009. 3rd Ed., 2003.
No. Γextb 1 2 3	pook/s Principles of metal casting Manufacturing Process-I Manufacturing Technology- Foundry, Forming and Welding	Author/s Rechard W. Heine, Carl R. Loper Jr., Philip C. Rosenthal Dr. K. Radhakrishna	Tata McGraw Hill Education Private Limited Sapna Book House,	Edition and Year 1976 5th Revised Edition 2009.

SeropeKalpakjianS

teuen. R Sechmid

Pearson Education Asia

5th Ed. 2006

B. E. MECHANICAL ENGINEERING						
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)						
SEMESTER - IV						
COMPUTER AIDED MACHINE DRAWING						
Course Code	18ME36A/46A	CIE Marks	40			
Teaching Hours/Week (L:T:P)	Teaching Hours/Week (L:T:P) 1:4:0 SEE Marks 60					
Credits	03	Exam Hours	03			
Course Learning Objectives	·	· · · · · · · · · · · · · · · · · · ·	·			

Course Learning Objectives:

- To acquire the knowledge of CAD software and its features.
- To familiarize the students with Indian Standards on drawing practices.
- To impart knowledge of thread forms, fasteners, keys, joints and couplings.
- To make the students understand and interpret drawings of machine components leading to preparation of assembly drawings manually and using CAD packages.
- To acquire the knowledge of limits, tolerance and fits and indicate them on machine drawings.

Part A

Part A

Introduction:

Review of graphic interface of the software. Review of basic sketching commands and navigational commands. Starting a new drawing sheet. Sheet sizes. Naming a drawing, Drawing units, grid and snap. Conversion of pictorial views into orthographic projections of simple machine parts (with and without section). Hidden line conventions. Precedence of lines.

Sections of Solids: Sections of Pyramids, Prisms, Cubes, Tetrahedrons, Cones and Cylinders resting only on their bases (No problems on axis inclinations, spheres and hollow solids). True shape of sections.

Conversion of pictorial views into orthographic projections of simple machine parts. Hidden line conventions. Precedence of lines.

Conversion of pictorial views into orthographic projections of simple machine parts (with section planes indicated on the part).

Thread Forms: Thread terminology, sectional views of threads. ISO Metric (Internal & External), BSW (Internal & External) square and Acme. Sellers thread, American Standard thread.

Fasteners: Hexagonal headed bolt and nut with washer (assembly), square headed bolt and nut with washer (assembly) simple assembly using stud bolts with nut and lock nut. Flanged nut, slotted nut, taper and split pin for locking, counter sunk head screw, grub screw, Allen screw.

Part B

Keys: Parallel key, Taper key, Feather key, Gib-head key and Woodruff key.

Joints: Cotter joint (socket and spigot), knuckle joint (pin joint) for two rods.

Couplings: Split Muff coupling, Protected type flanged coupling, pin (bush) type flexible coupling, and universal coupling (Hooks' Joint)

Part C

Limits, Fits and Tolerances: Introduction, Fundamental tolerances, Deviations, Methods of placing limit dimensions, machining symbols, types of fits with symbols and applications, geometrical tolerances on drawings. Standards followed in industry.

Assembly Drawings: (Part drawings shall be given)

- 1. Plummer block (Pedestal Bearing)
- 2. Lever Safety Valve
- 3. I.C. Engine connecting rod
- 4. Screw jack (Bottle type)
- 5. Tailstock of lathe
- 6. Machine vice
- 7. Tool head of shaper

Course Outcomes: At the end of the course the student will be able to:

CO1: Identify the national and international standards pertaining to machine drawing.

- CO2: Understand the importance of the linking functional and visualization aspects in the preparation of the part drawings
- CO3: Apply limits and tolerances to assemblies and choose appropriate fits for given assemblies.
- CO4: Interpret the Machining and surface finish symbols on the component drawings.
- CO5: Preparation of the part or assembly drawings as per the conventions.

Scheme of Examination: Two questions to be set from each Part A, part B and Part C. Student has to answer one question each from Part A and Part B for 25 marks each and one question from Part C for 50 marks.

INSTRUCTION FOR COMPUTER AIDED MACHINE DRAWING (15ME36A/46A) EXAMINATION

- 1. No restriction of timing for sketching/ computerization of solutions. The total duration is 3 hours.
- 2. It is desirable to do sketching of all the solutions before computerization.
- 3. Drawing instruments may be used for sketching.
- 4. For Part A and Part B, 2D drafting environment should be used.
- 5. For Part C, 3D environment should be used for parts and assembly, and extract 2D views of assembly.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textb	ook/s		•	•
1	Machine Drawing	K.R. Gopala Krishna	Subhash Publication	2005
2	Machine Drawing	N.D.Bhat&V.M.P anchal	Charoratar publishing house	2005
Refere	ence Books		·	
3	A Text Book of Computer Aided Machine Drawing	S. Trymbaka Murthy	CBS Publishers, New Delhi	2007
4	Engineering drawing	P.S.Gill	S K Kataria and Sons	2013
5	Machine Drawing	N. Siddeshwar, P. Kanniah, V.V.S. Sastri	Tata McGraw Hill	2006

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) **SEMESTER - IV** MECHANICAL MEASUREMENTS AND METROLOGY Course Code 18ME36B/46B CIE Marks 40 Teaching Hours /Week (L:T:P) 60 3:0:0 SEE Marks 03 03 Credits Exam Hours **Course Learning Objectives:** • To understand the concept of metrology and standards of measurement. • To equip with knowledge of limits, fits, tolerances and gauging To acquire knowledge of linear and Angular measurements, Screw thread and gear measurement & comparators. • To understand the knowledge of measurement systems and methods with emphasis on different Transducers, intermediate modifying and terminating devices. • To understand the measurement of Force, Torque, Pressure, Temperature and Strain. Module-1 Introduction to Metrology: Definition, objectives of metrology, Material Standards, Wavelength Standards, Classification of standards, Line and End standards, Calibration of End bars. Numerical examples. Liner measurement and angular measurements: Slip gauges-Indian standards on slip gauges, Adjustable slip gauges, Wringing of slip gauges, Problems on building of slip gauges (M87, M112), Measurement of angle-sine bar, Sine centre, Angle gauges, Optical instruments for angular measurements. Autocollimator-Applications for measuring straightness and squareness. Module-2 System of Limits, Fits, Tolerance and Gauging: Definitions, Tolerance, Tolerance analysis (addition & subtraction of tolerances) Inter change ability & Selective assembly. Class & grade of tolerance, Fits, Types of fits, Numerical on limits, fit and tolerance. Hole base system & shaft base system. Taylor's principle, Types of limit gauges, Numerical on limit gauge design. Comparators: Functional requirements, Classification, Mechanical- Johnson Mikrokator, Sigma comparators, Dial indicator, Electrical comparators, LVDT, Pneumatic comparators- Principle of back pressure, Solex comparators Ontical comparators- 7eiss ultra- ontimeter Module-3 Measurement of screw thread and gear: Terminology of screw threads, Measurement of major diameter, Minor diameter, Pitch, Angle and Effective diameter of screw threads by 2- wire and 3-wire methods, Best size wire. Screw thread gauges, Toolmaker's microscope. Gear tooth Measurements: Tooth thickness measurement using constant chord method, Addendum, Comparator method and Base tangent method, Measurement of pitch, Concentricity, Run out and In volute profile. Gear roll tester for composite error. Module-4 Measurement system and basic concepts of measurement methods: Definition, Significance of measurement, generalized measurement system, Static characteristics- Accuracy, Precision, Calibration, Threshold, Sensitivity, Hysteresis, Repeatability, Linearity, Loading effect, Dynamic characteristics- System response, Time delay. Errors in measurement, Classification of errors. Transducers: Transfer efficiency, Primary and Secondary transducers, Electrical transducers, Mechanical transducers, Electronic transducers, Relative comparison of each type of transducers. Intermediate Modifying and Terminating Devices: Mechanical systems, Inherent problems, Electrical intermediate modifying devices, Input circuitry, Ballast circuit, Electronic amplifiers. Terminating devices, Cathode ray oscilloscope, Oscillographs. Module-5

Applied mechanical measurement: Measurement of force, Torque, Pressure, Types of Dynamometers, Absorption dynamometer, Prony brake and Rope brake dynamometer, and Power Measuring Instruments. Use of elastic members, Bridgeman gauge, McLeod gauge, Pirani gauge.

Measurement of strain and temperature: Theory of strain gauges, Types, Electrical resistance strain gauge, Preparation and mounting of Strain gauges, Gauge factor, Methods of strain measurement, temperature compensation, Resistance thermometers, Thermocouple, Law of thermocouple, Pyrometer, Optical pyrometer.

Course Outcomes: At the end of the course the student will be able to:

- CO1: Understand the objectives of metrology, methods of measurement, standards of measurement & various measurement parameters.
- CO2: Explain tolerance, limits of size, fits, geometric and position tolerances, gauges and their design
- CO3: Understand the working principle of different types of comparators.
- CO3: Describe measurement of major & minor diameter, pitch, angle and effective diameter of screw threads.
- CO4: Explain measurement systems, transducers, intermediate modifying devices and terminating devices..

CO5: Describe functioning of force, torque, pressure, strain and temperature measuring devices.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
Text	Textbook/s						
1	Mechanical Measurements	Beckwith Marangoni and Lienhard	Pearson Education	6th Ed., 2006			
2	Instrumentation, Measurement and Analysis	B C Nakra, K K Chaudhry	McGraw–Hill	4th Edition			
3	Engineering Metrology	R.K. Jain	Khanna Publishers	2009			
Refe	rence Books						
1	Engineering Metrology and Measurements	Bentley	PearsonEducation				
2	Theory and Design for Mechanical Measurements, III edition	Richard S Figliola, Donald E Beasley	WILEY IndiaPublishers				
3	Engineering Metrology	Gupta I.C	Dhanpat RaiPublications				
4	Deoblin's Measurement system,	Ernest Deoblin, Dhanesh manick	McGraw–Hill				
5	Engineering Metrology and Measur ements	N.V.RaghavendraandL.Kri shnamurthy	Oxford UniversityPress.				

		B. E. MECHANICAL ENGINI	-	
	Choice Based Ci	edit System (CBCS) and Outco	me Based Education (OBE)	
		SEMESTER - IV	A D	
Cour	se Code	MATERIAL TESTING L	CIE Marks	40
		18MEL37A/47A 0:2:2	SEE Marks	60
Cred	hing Hours /Week (L:T:P)	0.2.2	Exam Hours 03	
	se Learning Objectives:	02	Examinours	05
		e preparation of samples to pe	orform characterization such a	ac
	•	action of phases and grain size		
				standard tasts
		Il behaviour of various enginee		stanuaru tests.
		nodes and the different loads o		
	 To learn the concepts of i 	mproving the mechanical prop	erties of materials by differer	it methods like
	heat treatment, surface t	reatment etc.		
SI.		Experiments		
No.				
		PART A		
1		Metallographic examination o	U	
		of plain carbon steel, tool	steel, gray C.I, SG iron, Br	ass, Bronze &
	composites.			
2	-	normalizing, hardening and ter		
		of heat treated components t		should report
		cooled, water cooled, air cooled	-	
		distinguish the phase change	s in a heat treated specime	n compared to
_	untreated specimen.			
3		s's Hardness tests on untreated	-	•
4		and Welded components using	g Non-destructive tests like:	
	,	aw detection		
		ack detection		
	f) Dye penetra	ation testing.		
-	Tancila shaar and same	PART B	a and cost iven anadimous	
5	Testing Machine	ssion tests of steel, aluminui	n and cast from specimens	using Universa
6	Torsion Test on steel bar.			
6 7	Bending Test on steel and w	and spacimons		
8	Izod and Charpy Tests on M			
9		istics of ferrous and non-ferrou	is materials under different n	arameters
9 10		ssion tests of steel, aluminui		
10	Testing Machine		in and case non specificity	Song onverse
11	Fatigue Test (demonstration	only).		
Cour	0 (ne course the student will be al	hle to:	
		n skills in the field of material to		
		nderstanding of the mechani		hy performin
	•	incrotationing of the methali	ical properties of materials	by perioritin
•	riments.			
		analyse a material failure and o		g agent/s.
		testing methods in related area		
	CO5: Understand how to imp	rove structure/behaviour of ma	aterials for various industrial a	applications.

Conduct of Practical Examination:

1. All laboratory experiments are to be included for practical examination.

2. Breakup of marks and the instructions printed on the cover page of answer script to be strictly adhered by the examiners.

3. Students can pick one experiment from the questions lot prepared by the examiners.

4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero. Scheme of Examination:

ONE question from part -A: 30 Marks ONE question from part -B: 50 Marks Viva -Voice: 20 Marks Total: 100 Marks

		edit System (CBCS) and Outco SEMESTER - IV			
MECHANICAL MEASUREMENTS AND METROLOGY LAB					
Cour	se Code	18MEL37B/47B	CIE Marks	40	
Teac	hing Hours/Week (L:T:P)	0:2:2	SEE Marks	60	
Credi		02	Exam Hours	03	
•	experiments.To illustrate the use of var	al concepts taught in Mechani ious measuring tools & measu techniques of various measur		y through	
SI. No.		Experiments			
110.		PART A			
1	Calibration of Pressure Gaug	e			
2	Calibration of Thermocouple				
3	Calibration of LVDT				
4	Calibration of Load cell				
5	Determination of modulus o	f elasticity of a mild steel spec	imen using strain gauges.		
		PART B			
6	Measurements using Optical Projector / Toolmakers' Microscope.				
7	Measurement of angle using	Sine Centre / Sine bar / bevel	protractor		
8	Measurement of alignment	using Autocollimator / Roller s	et		
9	Measurement of cutting too	forces using:			
	Lathe tool Dynai	nometer			
	Drill tool Dynam	ometer.			
10	Measurements of Screw three	ead parameters using two wire	e or three-wire methods.		
11	Measurements of surface ro	ughness using Tally Surf/Mech	nanical Comparator		
12	Measurement of gear tooth	profile using gear tooth Vernie	er/Gear tooth micrometer		
13	Calibration of Micrometer us	ing slip gauges			
14	Measurement using Optical	Flats			
	se Outcomes: At the end of th				
			ole, LVDT, load cell, micromete		
(entre/ Sine Bar/ Bevel Protracto	Ji, alignment	
	using Autocollimator/ Ro		aal makar miaraaaaa Ortigal	flate	
			ool maker microscope, Optical	nats.	
	CO4: Analyse tool forces using	· ·		using goor	
(ire method, gear tooth profile	using gear	
	tooth Vernier/Gear toot	n micrometer s of measurement of surface r			

Conduct of Practical Examination:

1. All laboratory experiments are to be included for practical examination.

2. Breakup of marks and the instructions printed on the cover page of answer script to be strictly adhered by the examiners.

3. Students can pick one experiment from the questions lot prepared by the examiners.

Scheme of Examination:

ONE question from part -A:30 MarksONE question from part -B:50 MarksViva -Voice:20 MarksTotal:100 Marks

	Choice Based C	B. E. MECHANICAL ENGIN edit System (CBCS) and Outc			
		SEMESTER - IV			
		ORKSHOP AND MACHINE SH	1		
Course (18MEL38A/48A	CIE Marks	40	
	g Hours/Week (L:T:P)	0:2:2	SEE Marks	60	
Credits		02	Exam Hours	03	
	Learning Objectives:				
		tting tools to perform fitting o			
		fferent machine tools, accesso			
		ng and machining operations t	-		
	•	s and expose students to shop			
•	To educate students abou	t ethical, environmental and s	afety standards.		
SI.		Experimen	ts		
No.					
		PART A			
	Preparation of at least two block, marking gauge, files	o fitting joint models by profic , hack saw drills etc.	ient handling and application	of hand tools- V-	
		PART B			
2	Preparation of three mod	els on lathe involving - Plain	turning, Taper turning, Step	turning, Thread	
	cutting, Facing, Knurling, Drilling, Boring, Internal Thread cutting and Eccentric turning.				
	Exercises should include so	election of cutting parameters	and cutting time estimation.		
		PART C			
3	Cutting of V Groove/ dove	tail / Rectangular groove usin	g a shaper.		
	Cutting of Gear Teeth usin				
	-	election of cutting parameters	and cutting time estimation.		
•		PART D (DEMONSTRATIO	N ONLY)		
St	tudy & Demonstration o	f power tools like power dr	ill, power hacksaw, portabl	e hand grinding	
C	ordless screw drivers, proc	luction air tools, wood cutter,	etc., used in Mechanical Eng	ineering.	
Course (Dutcomes: At the end of the end	ne course the student will be a	able to:		
	0 0	s, understand operational syn		•	
CO2		cording to drawings using har	nd tools- V-block, marking gau	uge, files, hack	
	saw, drills etc.				
CO3		s of lathe, shaping and milling	machines and various access	sories and	
60.4	attachments used.				
C04		s like cutting speed, feed, dep	th of cut, and tooling for vari	ous machining	
COF	operations.	ing operations such as plain	turning tapor turning stor	a turning throad	
	•			-	
		nal thread cutting, eccentric tu			
		ations such as plain shaping, i	nclined shaping, keyway cutt	ing, Indexing and	
	r cutting and estimate cut of Practical Examination:				
		o be included for practical exa	mination		
		ctions printed on the cover pa		ictly adhered by	
	aminers.	caons princed on the cover pr	abe of answer script to be still	ictly duffered by	
		nt from the questions lot prep	pared by the examiners		
		d only once and 15% Marks all	-	to be made zero	
31.2.12		,	Processie part		

Scheme of Examination:	
One Model from Part-A or Part-C:	30 Marks
One Model from Part-B:	50 Marks
Viva – Voce:	20 Marks
TOTAL:	100 Marks

	ased Credit System (CBCS) and Out SEMESTER - IV	come Based Education (OBE)	
	FOUNDRY, FORGING AND V	VELDING LAB	
Course Code	18MEL38B/48B	CIE Marks	40
Teaching Hours/Week (L:T		SEE Marks	60
Credits	02	Exam Hours	03
Course Learning Objectiv	25:		
 To provide an insignation of the equipment. 	ht into different sand preparation a third different forging tools and each the second s	quipment and arc welding tool	
	to students to enhance their practi	cal skills in welding, forging and	d hand moulding
SI.	Experimen	ts	
No.			
	PART A		
1 Testing of Molding			
-	specimens and conduction of the fo	-	
-	ar and Tensile tests on Universal Sar	nd Testing Machine.	
2. Permeability test			
	ind Grain Fineness Number (GFN) of	Base Sand	
-	rmination on Base Sand.		
Welding Practice:	ools and wolding aquinment		
-	ools and welding equipment ed joints using Arc Welding equipme	nt	
-	joint, V-Joint, Lap joints on M.S. flat		
	PART B	>	
2 Foundry Practice:	FARID		
-	and other equipment for Preparat	ion of molding sand mixture	
-	en sand molds kept ready for pouri	-	
	olding boxes (hand cut molds).		
	ns (Single piece pattern and Split pa	ttern).	
	g core in the mold.(Core boxes).		
•	casting (Aluminium or cast iron-Dei	monstration only)	
•	PART C		
3 Forging Operation	: Use of forging tools and other for	ging equipment.	
	th of the raw material required to p		cale loss.
 Preparing minimu 	n three forged models involving ups	etting, drawing and bending o	perations.
Course Outcomes: At the	end of the course the student will be	able to:	
Demonstrate varie	us skills in preparation of molding	sand for conducting tensile, sl	near and
compression tests	using Universal sand testing machin	e.	
Demonstrate skills	in determining permeability, clay of	ontent and Grain Fineness Nu	umber of base
sands.			
	s in preparation of forging models ir	volving unsetting drawing and	l hending
		and appending, and wring and	
Conduct of Practical Exam	ination:		
	nts are to be included for practical ex	kamination.	
	ie instructions printed on the cover p		ctly adhered by
3. Students can pick one e	operiment from the questions lot pro	epared by the examiners.	
		llotted to the procedure part t	

Scheme of Examination:

- 1. One question is to be set from Part-A: 30 marks. (20 marks for sand testing+ 10 Marks for welding)
- 2. One question is to be set from either Part-B or Part-C: 50 Marks
- 3. Viva Voce: 20 marks

Course Outcomes: At the end of the course, the student will be able to:

- CO1: Understand needs, functions, roles, scope and evolution of Management.
- CO2: Understand importance, purpose of Planning and hierarchy of planning and also53 nalyse its types.
- CO3: Discuss Decision making, Organizing, Staffing, Directing and Controlling.
- CO4: Select the best economic model from various available alternatives.
- CO5: Understand various interest rate methods and implement the suitable one.
- CO6: Estimate various depreciation values of commodities.
- CO7: Prepare the project reports effectively.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.

•	The students will have to answer five full questions, selecting one full question from each modul	e.
-	The students will have to answer five fail questions, selecting one fail question from each modal	. C .

SI No	Title of the Book	Name of the	Name of the Publisher	Edition and
Textbo	ok/s			
1	Mechanical estimation and costing	T.R. Banga & S.C. Sharma	Khanna Publishers	17th edition 2015
2	Engineering Economy	Riggs J.L	McGraw Hill	4th
3	Engineering Economy	Thuesen H.G	PHI	2002
4	Principles of Management	Tripathy and Reddy	Tata McGraw Hill	3 rd edition 2006
Refere	nce Books	1		
1	Management Fundamentals - Concepts, Application, Skill Development	Robers Lusier Thomson	Pearson Education	
2	Modern Economic Theory	Dr. K. K. Dewett& M. H. Navalur,	Chand Publications	
3	Economics: Principles of Economics	N Gregory Mankiw,	Cengage Learning	
4	Basics of Engineering Economy	Leland Blank & Anthony Tarquin	McGraw Hill Publication (India) Private Limited	

SEMESTER - V						
	MANAGEMENT AND EC	CONOMICS				
Course Code	18ME51	CIE Marks	40			
Teaching Hours/Week (L:T:P)	2:2:0	SEE Marks	60			
Credits	03	Exam Hours	03			
C .	rstand the fundamental c	oncepts and principles of	f management: the basi			
 Course Learning Objectives: To help the students to under roles, skills, functions of man marketing. 						

of management - Management as a science, art of profession - Management & Administration - Roles of Management, Levels of Management, Development of Management Thought- early management approaches – Modern management approaches. Planning: Nature, importance and purpose of planning process Objectives - Types of plans (Meaning Only) - Decision making Importance of planning - steps in planning & planning premises - Hierarchy of plans.

Module-2

Organizing and Staffing: Nature and purpose of organization Principles of organization - Types of organization -Departmentation Committees Centralization Vs Decentralization of authority and responsibility - Span of control - MBO and MBE (Meaning Only) Nature and importance of staffing--Process of Selection & Recruitment (in brief). Directing & Controlling: Meaning and nature of directing Leadership styles, Motivation Theories, Communication - Meaning and importance - coordination, meaning and importance and Techniques of Co Ordination. Meaning and steps in controlling - Essentials of a sound control system - Methods of establishing control (in brief).

Module-3

Introduction: Engineering and economics, Problem solving and decision making, Laws of demand and supply, Difference between Microeconomics & Macroeconomics, equilibrium between demand & supply, elasticity of demand, price elasticity, income elasticity. Law of Returns, Interest and interest factors, simple and compound interest, Cash flow diagrams, personal loans and EMI payment calculation with flexible interest rates, Discussion and problems.

Module-4

Present, future and annual worth and rate of returns: Basic present worth comparisons, Present worthequivalence, Assets with unequal lives and infinites lives, future worth comparisons, payback comparisons, Equivalent annual worth comparisons, situations for annual worth comparisons. Asset life, Rate of return, minimum acceptable rate of return, IRR anomalies and misconceptions, Cost of capital, comparisons of all present future and annual worth with IRR, product costing, Discussions and problems.

Module-5

Costing and depreciation: Components of costs, estimation of selling price, marginal cost, first cost, all kinds of overheads, indirect cost estimation with depreciation, mensuration and estimation of material cost, cost estimation of mechanical process, idling time. Product costing (approaches to product costing), causes of depreciation, methods of computing depreciation charges, straight line method, declining balance method, sum of years method, sinking fund method, service output methods, taxation concepts, personal income taxes and corporate taxes, Discussions and problems.

Course outcomes: At the end of the course, the student will be able to:

CO1: Understand needs, functions, roles, scope and evolution of Management

CO2: Understand importance, purpose of Planning and hierarchy of planning and also54 nalyse its types.

CO3: Discuss Decision making, Organizing, Staffing, Directing and Controlling.

CO4: Select the best economic model from various available alternatives.

CO5: Understand various interest rate methods and implement the suitable one.

CO6: Estimate various depreciation values of commodities.

CO7: Prepare the project reports effectively.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the	Edition and Year			
Textboo	Textbook/s						
1	Mechanical estimation	T.R. Banga& S.C. Sharma	Khanna Publishers	17th edition			
2	Engineering Economy	Riggs J.L	McGraw Hill	4th edition			
3	Engineering Economy	Thuesen H.G	PHI	2002			
4	Principles of Management	Tripathy and Reddy	Tata McGraw Hill	3 rd edition 2006			
Textboo	ok/s						
1	Mechanical estimation	T.R. Banga& S.C. Sharma	Khanna Publishers	17th edition			
2	Engineering Economy	Riggs J.L	McGraw Hill	4th edition			
3	Engineering Economy	Thuesen H.G	PHI	2002			
4	Principles of Management	Tripathy and Reddy	Tata McGraw Hill	3 rd edition 2006			

Choice Based Cred	B. E. MECHANICAL EN dit System (CBCS) and Ou	GINEERING utcome Based Education (OBE)	
	SEMESTER - Y		,	
DESIGN OF MACHINE ELEMENTS I				
Course Code	18ME52	CIE Marks	40	
Teaching Hours/Week (L:T:P)	3:2:0	SEE Marks	60	
Credits	04	Exam Hours	03	
Course Learning Objectives:				
• To understand the various ste	eps involved in the Desig	n Process.		
• To explain the principles invo	olved in design of machin	e elements, subjected to a	different kinds of forces	
from the considerations of st	rength, rigidity, functiona	al and manufacturing requi	irements.	
• To understand and interpret				
machine elements.			0	
• To learn to use national and	international standards	, standard practices, stand	dard data, catalogs, an	
standard components used ir			, ,,	
• Develop the capability to de	•		nts. screwed ioints. an	
power screws.		,,,	,,,	
Module-1				
Introduction: Design Process: Definit	tion of design phases of	design and review of en	gineering materials an	
their properties and manufacturing p		-		
Review of axial, bending, shear and to				
dimensional stresses, principal stress	-	•		
Design for static strength: Factor of s				
Failure mode: definition and types	•	d ductile materials: even	and uneven material	
Theories of failure: maximum norma				
		IIII SHEAF SHESS THEORY. OF	istortion energy theory	
strain energy theory, Columba –M	lohr theory and modifi	ed Mohr's theory. Stres		
strain energy theory, Columba –M concentration factor and methods of	lohr theory and modifi	ed Mohr's theory. Stres		
strain energy theory, Columba –M concentration factor and methods of Module-2	lohr theory and modifi reducing stress concentr	ed Mohr's theory. Stres ation.		
strain energy theory, Columba –M concentration factor and methods of Module-2 Impact Strength: Introduction, Impac	lohr theory and modifi reducing stress concentr ct stresses due to axial, be	ed Mohr's theory. Stres ation. ending and torsion loads.	s concentration, stres	
strain energy theory, Columba –M concentration factor and methods of Module-2 Impact Strength: Introduction, Impac Fatigue loading: Introduction to fat	lohr theory and modifi reducing stress concentr t stresses due to axial, be igue failure, Mechanism	ed Mohr's theory. Stres ation. ending and torsion loads. of fatigue failure, types	s concentration, stres	
strain energy theory, Columba –M concentration factor and methods of Module-2 Impact Strength: Introduction, Impac Fatigue loading: Introduction to fat Diagram, Low cycle fatigue, High cycle	lohr theory and modifi reducing stress concentr ct stresses due to axial, be igue failure, Mechanism e fatigue, Endurance limi	ed Mohr's theory. Stres ation. ending and torsion loads. of fatigue failure, types t.	s concentration, stres of fatigue loading, S-I	
strain energy theory, Columba –M concentration factor and methods of Module-2 Impact Strength: Introduction, Impac Fatigue loading: Introduction to fat Diagram, Low cycle fatigue, High cycle Modifying factors: size effect, surfac	lohr theory and modifi reducing stress concentr ct stresses due to axial, be igue failure, Mechanism e fatigue, Endurance limi ce effect, Stress concen	ed Mohr's theory. Stres ation. ending and torsion loads. of fatigue failure, types t. tration effects Notch sens	s concentration, stres of fatigue loading, S-I sitivity, Soder berg an	
strain energy theory, Columba –M concentration factor and methods of Module-2 Impact Strength: Introduction, Impact Fatigue loading: Introduction to fat Diagram, Low cycle fatigue, High cycle Modifying factors: size effect, surfact Goodman relationships, stresses due	lohr theory and modifi reducing stress concentr ct stresses due to axial, be igue failure, Mechanism e fatigue, Endurance limi ce effect, Stress concen	ed Mohr's theory. Stres ation. ending and torsion loads. of fatigue failure, types t. tration effects Notch sens	s concentration, stres of fatigue loading, S-N sitivity, Soder berg and	
strain energy theory, Columba –M concentration factor and methods of Module-2 Impact Strength: Introduction, Impac Fatigue loading: Introduction to fat Diagram, Low cycle fatigue, High cycle Modifying factors: size effect, surfac Goodman relationships, stresses due Module-3	lohr theory and modifi reducing stress concentr at stresses due to axial, be igue failure, Mechanism e fatigue, Endurance limit ce effect, Stress concen- to combined loading, cur	ed Mohr's theory. Stres ation. ending and torsion loads. of fatigue failure, types t. tration effects Notch sens mulative fatigue damage, a	s concentration, stres of fatigue loading, S-I sitivity, Soder berg an and Miner's equation.	
strain energy theory, Columba –M concentration factor and methods of Module-2 Impact Strength: Introduction, Impace Fatigue loading: Introduction to fat Diagram, Low cycle fatigue, High cycle Modifying factors: size effect, surface Goodman relationships, stresses due Module-3 Design of shafts: Torsion of shafts, s	lohr theory and modifi reducing stress concentr ct stresses due to axial, be igue failure, Mechanism e fatigue, Endurance limit ce effect, Stress concent to combined loading, cur solid and hollow shaft d	ed Mohr's theory. Stres ation. ending and torsion loads. of fatigue failure, types t. tration effects Notch sen mulative fatigue damage, a esign with steady loading	s concentration, stres of fatigue loading, S-I sitivity, Soder berg an and Miner's equation. based on strength an	
strain energy theory, Columba –M concentration factor and methods of Module-2 Impact Strength: Introduction, Impace Fatigue loading: Introduction to fat Diagram, Low cycle fatigue, High cycle Modifying factors: size effect, surface Goodman relationships, stresses due Module-3 Design of shafts: Torsion of shafts, streigidity, ASME and BIS codes for pow	lohr theory and modifi reducing stress concentr et stresses due to axial, be igue failure, Mechanism e fatigue, Endurance limi- ce effect, Stress concen- to combined loading, cur solid and hollow shaft d ver transmission shafting,	ed Mohr's theory. Stres ation. ending and torsion loads. of fatigue failure, types t. tration effects Notch sens mulative fatigue damage, a esign with steady loading , design of shafts subjecte	s concentration, stres of fatigue loading, S-I sitivity, Soder berg an and Miner's equation. based on strength an	
strain energy theory, Columba –M concentration factor and methods of Module-2 Impact Strength: Introduction, Impact Fatigue loading: Introduction to fat Diagram, Low cycle fatigue, High cycle Modifying factors: size effect, surfact Goodman relationships, stresses due Module-3 Design of shafts: Torsion of shafts, strigidity, ASME and BIS codes for pow torsion and axial loading. Design of shafts	lohr theory and modifi reducing stress concentr ct stresses due to axial, be igue failure, Mechanism e fatigue, Endurance limi ce effect, Stress concen- to combined loading, cur solid and hollow shaft d ver transmission shafting, nafts subjected to fluctua	ed Mohr's theory. Stres ation. ending and torsion loads. of fatigue failure, types t. tration effects Notch sens mulative fatigue damage, a esign with steady loading , design of shafts subjecte ting loads	s concentration, stres of fatigue loading, S-I sitivity, Soder berg an and Miner's equation. based on strength an d to combined bending	
strain energy theory, Columba –M concentration factor and methods of Module-2 Impact Strength: Introduction, Impact Fatigue loading: Introduction to fat Diagram, Low cycle fatigue, High cycle Modifying factors: size effect, surfact Goodman relationships, stresses due Module-3 Design of shafts: Torsion of shafts, s rigidity, ASME and BIS codes for pow torsion and axial loading. Design of sh Design of keys and couplings :Keys:	lohr theory and modifi reducing stress concentr et stresses due to axial, be igue failure, Mechanism e fatigue, Endurance limit ce effect, Stress concen- to combined loading, cur solid and hollow shaft d ver transmission shafting, nafts subjected to fluctua Types of keys and their	ed Mohr's theory. Stres ation. ending and torsion loads. of fatigue failure, types t. tration effects Notch sens mulative fatigue damage, a esign with steady loading , design of shafts subjecte ting loads applications, design consid	s concentration, stres of fatigue loading, S-I sitivity, Soder berg an and Miner's equation. based on strength an d to combined bending	
strain energy theory, Columba –M concentration factor and methods of Module-2 Impact Strength: Introduction, Impace Fatigue loading: Introduction to fat Diagram, Low cycle fatigue, High cycle Modifying factors: size effect, surface Goodman relationships, stresses due Module-3 Design of shafts: Torsion of shafts, s rigidity, ASME and BIS codes for pow torsion and axial loading. Design of sh Design of keys and couplings :Keys: tapered sunk keys, Design of square a	lohr theory and modifi reducing stress concentr ct stresses due to axial, be igue failure, Mechanism e fatigue, Endurance limit ce effect, Stress concent to combined loading, cur solid and hollow shaft d ver transmission shafting, hafts subjected to fluctua Types of keys and their stand rectangular sunk keys	ed Mohr's theory. Stres ation. ending and torsion loads. of fatigue failure, types t. tration effects Notch sen mulative fatigue damage, a esign with steady loading , design of shafts subjecte ting loads applications, design consides.	s concentration, stres of fatigue loading, S- sitivity, Soder berg an and Miner's equation. based on strength an d to combined bending derations in parallel an	
strain energy theory, Columba –M concentration factor and methods of Module-2 Impact Strength: Introduction, Impace Fatigue loading: Introduction to fat Diagram, Low cycle fatigue, High cycle Modifying factors: size effect, surface Goodman relationships, stresses due Module-3 Design of shafts: Torsion of shafts, s rigidity, ASME and BIS codes for pow torsion and axial loading. Design of sh Design of keys and couplings :Keys: tapered sunk keys, Design of square a Couplings: Rigid and flexible coupling	lohr theory and modifi reducing stress concentr ct stresses due to axial, be igue failure, Mechanism e fatigue, Endurance limit ce effect, Stress concent to combined loading, cur solid and hollow shaft d ver transmission shafting, hafts subjected to fluctua Types of keys and their stand rectangular sunk keys	ed Mohr's theory. Stres ation. ending and torsion loads. of fatigue failure, types t. tration effects Notch sen mulative fatigue damage, a esign with steady loading , design of shafts subjecte ting loads applications, design consides.	s concentration, stres of fatigue loading, S-I sitivity, Soder berg an and Miner's equation. based on strength an d to combined bending derations in parallel an	
strain energy theory, Columba –M concentration factor and methods of Module-2 Impact Strength: Introduction, Impace Fatigue loading: Introduction to fat Diagram, Low cycle fatigue, High cycle Modifying factors: size effect, surface Goodman relationships, stresses due Module-3 Design of shafts: Torsion of shafts, s rigidity, ASME and BIS codes for pow torsion and axial loading. Design of sh Design of keys and couplings :Keys: tapered sunk keys, Design of square a Couplings: Rigid and flexible coupling coupling.	lohr theory and modifi reducing stress concentr ct stresses due to axial, be igue failure, Mechanism e fatigue, Endurance limit ce effect, Stress concent to combined loading, cur solid and hollow shaft d ver transmission shafting, hafts subjected to fluctua Types of keys and their stand rectangular sunk keys	ed Mohr's theory. Stres ation. ending and torsion loads. of fatigue failure, types t. tration effects Notch sen mulative fatigue damage, a esign with steady loading , design of shafts subjecte ting loads applications, design consides.	s concentration, stres of fatigue loading, S-I sitivity, Soder berg an and Miner's equation. based on strength an d to combined bending derations in parallel an	
strain energy theory, Columba –M concentration factor and methods of Module-2 Impact Strength: Introduction, Impace Fatigue loading: Introduction to fat Diagram, Low cycle fatigue, High cycle Modifying factors: size effect, surface Goodman relationships, stresses due Module-3 Design of shafts: Torsion of shafts, s rigidity, ASME and BIS codes for pow torsion and axial loading. Design of sh Design of keys and couplings :Keys: tapered sunk keys, Design of square a Couplings: Rigid and flexible coupling coupling. Module-4	lohr theory and modifi reducing stress concentr et stresses due to axial, be igue failure, Mechanism e fatigue, Endurance limi ce effect, Stress concen- to combined loading, cur solid and hollow shaft d ver transmission shafting, nafts subjected to fluctua Types of keys and their and rectangular sunk keys g-types and applications,	ed Mohr's theory. Stres ation. ending and torsion loads. of fatigue failure, types t. tration effects Notch sens mulative fatigue damage, a esign with steady loading , design of shafts subjecte ting loads applications, design consic s. design of Flange coupling	s concentration, stres of fatigue loading, S-I sitivity, Soder berg an and Miner's equation. based on strength an d to combined bending derations in parallel an	
strain energy theory, Columba –M concentration factor and methods of Module-2 Impact Strength: Introduction, Impace Fatigue loading: Introduction to fat Diagram, Low cycle fatigue, High cycle Modifying factors: size effect, surface Goodman relationships, stresses due Module-3 Design of shafts: Torsion of shafts, s rigidity, ASME and BIS codes for pow torsion and axial loading. Design of sh Design of keys and couplings :Keys: tapered sunk keys, Design of square a Couplings: Rigid and flexible coupling coupling. Module-4 Design of Permanent Joints: Types o	Iohr theory and modifi reducing stress concentr et stresses due to axial, be igue failure, Mechanism e fatigue, Endurance limit ce effect, Stress concent to combined loading, cur solid and hollow shaft d ver transmission shafting, nafts subjected to fluctua Types of keys and their and rectangular sunk keys g-types and applications,	ed Mohr's theory. Stres ation. ending and torsion loads. of fatigue failure, types t. tration effects Notch sens mulative fatigue damage, a esign with steady loading , design of shafts subjecte ting loads applications, design consic s. design of Flange coupling ed and Welded Joints.	s concentration, stres of fatigue loading, S-I sitivity, Soder berg an and Miner's equation. based on strength an d to combined bending derations in parallel an , and Bush and Pin typ	
strain energy theory, Columba –M concentration factor and methods of Module-2 Impact Strength: Introduction, Impace Fatigue loading: Introduction to fat Diagram, Low cycle fatigue, High cycle Modifying factors: size effect, surface Goodman relationships, stresses due Module-3 Design of shafts: Torsion of shafts, s rigidity, ASME and BIS codes for pow torsion and axial loading. Design of sh Design of keys and couplings :Keys: tapered sunk keys, Design of square a Couplings: Rigid and flexible coupling coupling. Module-4 Design of Permanent Joints: Types o Riveted joints: Types of rivets, rivet of	Iohr theory and modifi reducing stress concentr et stresses due to axial, be igue failure, Mechanism e fatigue, Endurance limi- ce effect, Stress concen- to combined loading, cur solid and hollow shaft d ver transmission shafting, hafts subjected to fluctua Types of keys and their and rectangular sunk keys g-types and applications, of permanent joints-Rivet materials, Caulking and f	ed Mohr's theory. Stres ation. ending and torsion loads. of fatigue failure, types t. tration effects Notch sens mulative fatigue damage, a esign with steady loading , design of shafts subjecte ting loads applications, design consic s. design of Flange coupling ed and Welded Joints.	s concentration, stres of fatigue loading, S-I sitivity, Soder berg and and Miner's equation. based on strength and d to combined bending derations in parallel and , and Bush and Pin type	
strain energy theory, Columba –M concentration factor and methods of Module-2 Impact Strength: Introduction, Impace Fatigue loading: Introduction to fat Diagram, Low cycle fatigue, High cycle Modifying factors: size effect, surface Goodman relationships, stresses due Module-3 Design of shafts: Torsion of shafts, s rigidity, ASME and BIS codes for pow torsion and axial loading. Design of sh Design of keys and couplings :Keys: tapered sunk keys, Design of square a Couplings: Rigid and flexible coupling coupling. Module-4 Design of Permanent Joints: Types of Riveted joints: Types of rivets, rivet of failures of riveted joints, boiler joints,	Iohr theory and modifi reducing stress concentr et stresses due to axial, be igue failure, Mechanism e fatigue, Endurance limi ce effect, Stress concen- to combined loading, cur solid and hollow shaft d ver transmission shafting, nafts subjected to fluctua Types of keys and their and rectangular sunk keys g-types and applications, of permanent joints-Rivet materials, Caulking and f , riveted brackets.	ed Mohr's theory. Stres ation. ending and torsion loads. of fatigue failure, types t. tration effects Notch sens mulative fatigue damage, a esign with steady loading , design of shafts subjecte ting loads applications, design consides. design of Flange coupling ed and Welded Joints. fullering, analysis of riveter	s concentration, stres of fatigue loading, S-I sitivity, Soder berg an and Miner's equation. based on strength an d to combined bending derations in parallel an , and Bush and Pin typ d joints, joint efficiency	
strain energy theory, Columba –M concentration factor and methods of Module-2 Impact Strength: Introduction, Impace Fatigue loading: Introduction to fat Diagram, Low cycle fatigue, High cycle Modifying factors: size effect, surface Goodman relationships, stresses due Module-3 Design of shafts: Torsion of shafts, s rigidity, ASME and BIS codes for pow torsion and axial loading. Design of sh Design of keys and couplings :Keys: tapered sunk keys, Design of square a Couplings: Rigid and flexible coupling coupling. Module-4 Design of Permanent Joints: Types o Riveted joints: Types of rivets, rivet of failures of riveted joints, boiler joints, Welded joints: Types, strength of but	Iohr theory and modifi reducing stress concentr et stresses due to axial, be igue failure, Mechanism e fatigue, Endurance limi ce effect, Stress concen- to combined loading, cur solid and hollow shaft d ver transmission shafting, nafts subjected to fluctua Types of keys and their and rectangular sunk keys g-types and applications, of permanent joints-Rivet materials, Caulking and f , riveted brackets.	ed Mohr's theory. Stres ation. ending and torsion loads. of fatigue failure, types t. tration effects Notch sens mulative fatigue damage, a esign with steady loading , design of shafts subjecte ting loads applications, design consides. design of Flange coupling ed and Welded Joints. fullering, analysis of riveter	s concentration, stres of fatigue loading, S-I sitivity, Soder berg an and Miner's equation. based on strength an d to combined bending derations in parallel an , and Bush and Pin typ	
strain energy theory, Columba –M concentration factor and methods of Module-2 Impact Strength: Introduction, Impace Fatigue loading: Introduction to fat Diagram, Low cycle fatigue, High cycle Modifying factors: size effect, surface Goodman relationships, stresses due Module-3 Design of shafts: Torsion of shafts, s rigidity, ASME and BIS codes for pow torsion and axial loading. Design of sh Design of keys and couplings :Keys: tapered sunk keys, Design of square a Couplings: Rigid and flexible coupling coupling. Module-4 Design of Permanent Joints: Types o Riveted joints: Types of rivets, rivet of failures of riveted joints, boiler joints, Welded joints: Types, strength of but Module-5	Iohr theory and modifi reducing stress concentr et stresses due to axial, be igue failure, Mechanism e fatigue, Endurance limi ce effect, Stress concen- to combined loading, cur solid and hollow shaft d ver transmission shafting, hafts subjected to fluctua Types of keys and their and rectangular sunk keys g-types and applications, of permanent joints-Rivet materials, Caulking and f , riveted brackets.	ed Mohr's theory. Stres ation. ending and torsion loads. of fatigue failure, types t. tration effects Notch sens mulative fatigue damage, a esign with steady loading , design of shafts subjecte ting loads applications, design consides. design of Flange coupling ed and Welded Joints. fullering, analysis of riveter rically loaded welded joint	s concentration, stres of fatigue loading, S-I sitivity, Soder berg an and Miner's equation. based on strength an d to combined bending derations in parallel an , and Bush and Pin typ d joints, joint efficiency	
strain energy theory, Columba –M concentration factor and methods of Module-2 Impact Strength: Introduction, Impace Fatigue loading: Introduction to fat Diagram, Low cycle fatigue, High cycle Modifying factors: size effect, surface Goodman relationships, stresses due Module-3 Design of shafts: Torsion of shafts, se rigidity, ASME and BIS codes for pow torsion and axial loading. Design of sh Design of keys and couplings :Keys: tapered sunk keys, Design of square a Couplings: Rigid and flexible coupling coupling. Module-4 Design of Permanent Joints: Types of Riveted joints: Types of rivets, rivet of failures of riveted joints, boiler joints, Welded joints: Types, strength of but Module-5 Design of Temporary Joints: Types of	Iohr theory and modifi reducing stress concentr et stresses due to axial, be igue failure, Mechanism e fatigue, Endurance limi ce effect, Stress concen- to combined loading, cur solid and hollow shaft d ver transmission shafting, hafts subjected to fluctua Types of keys and their and rectangular sunk keys g-types and applications, of permanent joints-Rivet materials, Caulking and f , riveted brackets.	ed Mohr's theory. Stres ation. ending and torsion loads. of fatigue failure, types t. tration effects Notch sens mulative fatigue damage, a esign with steady loading , design of shafts subjecte ting loads applications, design consides. design of Flange coupling ed and Welded Joints. fullering, analysis of riveter rically loaded welded joint	s concentration, stres of fatigue loading, S-I sitivity, Soder berg an and Miner's equation. based on strength an d to combined bending derations in parallel an , and Bush and Pin typ d joints, joint efficiency	
strain energy theory, Columba –M concentration factor and methods of Module-2 Impact Strength: Introduction, Impace Fatigue loading: Introduction to fat Diagram, Low cycle fatigue, High cycle Modifying factors: size effect, surface Goodman relationships, stresses due Module-3 Design of shafts: Torsion of shafts, s rigidity, ASME and BIS codes for pow torsion and axial loading. Design of sh Design of keys and couplings :Keys: tapered sunk keys, Design of square a Couplings: Rigid and flexible coupling coupling. Module-4 Design of Permanent Joints: Types o Riveted joints: Types of rivets, rivet of failures of riveted joints, boiler joints, Welded joints: Types, strength of but Module-5	Iohr theory and modifi reducing stress concentr et stresses due to axial, be igue failure, Mechanism e fatigue, Endurance limi ce effect, Stress concen- to combined loading, cur solid and hollow shaft d ver transmission shafting, nafts subjected to fluctua Types of keys and their and rectangular sunk keys g-types and applications, of permanent joints-Rivet materials, Caulking and f , riveted brackets. tt and fillet welds, eccent	ed Mohr's theory. Stres ation. ending and torsion loads. of fatigue failure, types t. tration effects Notch sens mulative fatigue damage, a esign with steady loading , design of shafts subjecte ting loads applications, design consides. design of Flange coupling ed and Welded Joints. fullering, analysis of riveter rically loaded welded joint	s concentration, stress of fatigue loading, S- sitivity, Soder berg an and Miner's equation. based on strength an d to combined bending derations in parallel an , and Bush and Pin typ d joints, joint efficiency s asteners. Design of	

Power screws: Mechanics of power screw, stresses in power screws, efficiency and self-locking, design of power screws.

Assignment:

Course work includes a **Design project**. Design project should enable a group of students (maximum four in a group) to design a mechanical system (like couplings, screw jack, welded joints, bracket mounting using fasteners, etc.). Student should submit assembly drawing and part drawings, completely dimensioned, indicating the necessary manufacturing tolerances, surface finish symbols and geometric tolerances wherever necessary. Design project must be completed using appropriate solid modeling software. Computer generated drawings must be submitted. Design calculations must be hand written and should be included in the report. Design project should be given due credit in internal assessment.

Course Outcomes: At the end of the course, the student will be able to:

- CO1: Apply the concepts of selection of materials for given mechanical components.
- CO2: List the functions and uses of machine elements used in mechanical systems.
- CO3: Apply codes and standards in the design of machine elements and select an element based on the Manufacturer's catalogue.
- CO4: Analyse the performance and failure modes of mechanical components subjected to combined loading and fatigue loading using the concepts of theories of failure.
- CO5: Demonstrate the application of engineering design tools to the design of machine components like shafts, couplings, power screws, fasteners, welded and riveted joints.
- CO6: Understand the art of working in a team.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the	Edition and Year	
Textbook/s					
1	Shigley's Mechanical Engineering Design	Richard G. Budynas, and J. Keith Nisbett	McGraw-Hill Education	10 th edition, 2015.	
2	Fundamentals of Machine Component Design	Juvinall R.C, and Marshek K.M.	John Wiley & Sons	Third Edition, 2007 student	
3	Design of Machine Elements,	V B Bhandari	Tata McGraw Hill	4th Ed., 2016.	
4	Design of Machine Elements-I	Dr.M H Annaiah Dr. J Suresh Kumar	New Age International (P)	1s Ed., 2016	
Referen	ice Books				
1	Machine Design- an integrated approach	Robert L. Norton	Pearson Education	2 nd edition.	
2	Design and Machine Elements	Spotts M.F., Shoup T.E	Pearson Education	8 th edition,2006	
3	Machine Component Design	Orthwein W	Jaico Publishing Co	2003	
4	Machine Design	Hall, Holowenko, Laughlin (Schaum's Outline series)	Tata McGraw Hill Publishing	Special Indian Edition, 2008	
5	Elements of Machine Design	H.G.Patil, S.C.Pilli, R.R.Malagi, M.S.Patil	IK International	First edition,2019	

6	Design of Machine Elements Volume I	T. Krishna Rao	IK international publishing house,	2012	
7	Hand book of Mechanical	G. M. Maithra and L.V.Prasad	Tata McGraw Hill	2 nd edition, 2004.	
,	Design				
Design Data Hand Book:					
[1] Design Data Hand Book, K. Lingaiah, McGraw Hill, 2 nd edition, 2003.					
[2] Design Data Hand Book, K. Mahadevan and Balaveera Reddy, CBS publication.					
[3] Design Data Hand Book, H.G.Patil, I. K. International Publisher, 2010					
[4] PSG Design Data Hand Book, PSG College of technology, Coimbatore,					

Choice Based C	B. E. MECHANICAL ENGI redit System (CBCS) and Out	NEERING come Based Education (OBE)		
	SEMESTER - V			
DYNAMICS OF MACHINES				
Course Code	18ME53	CIE Marks	40	
Teaching Hours/Week (L:T:P)	3:2:0	SEE Marks	60	
Credits	04	Exam Hours	03	
of standard mechanisms. To understand the undesit To understand the effect of To understand the princip To know the concepts of m To compute the natural ar To analyze the vibrational Module-1 Static force analysis: Static equi mechanism. Dynamic force analysis	rable effects of unbalances re of Dynamics of undesirable vil les in mechanisms used for sp nodelling mechanical systems ad damped frequencies of fre motion of 1-DOF mechanical librium, analysis of four bar	beed control and stability contro s using spring, mass and dampe e 1-DOF mechanical systems systems under harmonic excita r mechanism, slider crank me	os in mechanism ol. r elements. ation conditions chanism, shape	
shaper mechanism. Module-2				
Balancing in multi cylinder-inline e and reverse crank method. Module-3 Governors: Types of Governors; F Sensitiveness, Isochronism, Effort Gyroscope: Vectorial representat	Force Analysis of Porter and and Power.	Hartnell Governors. Controlling	g Force, Stability	
plane disc, ship, aeroplane, Stabili	ty of two wheelers and four v	vheelers.		
Module-4 Free vibrations: Basic elements Equilibrium method, D'Alembert' frequency of single degree freedo over damped and critically dampe	s principle, Energy method, om systems, Effect of spring	Rayleigh's method. Determin mass, Damped free vibrations:	ation of natura	
Module-5 Forced vibrations: Undamped fo unbalance, Reciprocating unbala Transverse vibration of shaft with speed. Course Outcomes: At the end of th CO1: Analyse the mechanisms CO2: Carry out the balancing of CO3: Analyse different types of CO4: Analyse the gyrocconic of	nce, Vibration isolation, Su single concentrated load, se he course, the student will be for static and dynamic equili of rotating and reciprocating r f governors used in real life s	pport motion(absolute and r everal loads, uniformly distribu able to: brium. masses ituation.	elative motion) ted load, Critica	
CO4. Analyse the gyroscopic e	nects on disks, airplanes, star	pility of ships, two and four wh	eelels	

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	ok/s		·	
1	Theory of Machines: Kinematics and Dynamics	Sadhu Singh	Pearson	Third edition 2019.
2	Mechanism and Machine Theory	G. Ambekar	PHI	2009
Referer	nce Books		·	
1	Theory of Machines	Rattan S.S.	Tata McGraw-Hill Publishing Company	2014
2	Mechanisms and Machines- Kinematics, Dynamics and Synthesis	Michael M Stanisic	Cengage Learning	2016

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - V				
Course Code	18ME54	CIE Marks	40	
Teaching Hours/Week (L:T:P)	3:0:0	SEE Marks	60	
Credits	03	Exam Hours	03	
 process involved. Study the conversion of fluid degree of reaction. Analyse various designs of Study the various designs of 	id energy to mechanical energy to mechanical energy to mechanical energy to for the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second second of the second se	the working principle. orbing machine. chines, Comparison with positi- significance, Unit and specific q subject, questions on dimensio dies may be given more weightand had law of thermodynamics to erall isentropic efficiency, stage	ation factor an ve displacemen uantities, mod nal analysis ma age.) turbo machine efficiency (the	
expansion process. Simple Numerio	cal on stage efficiency and po	olytropic efficiency.		
Module-2				
Energy exchange in Turbo machi	•		-	
Velocity triangles for different va	-		-	
Reaction, utilization factor, Relatio	-			
General Analysis of Turbo machin degree of reaction, velocity trian reaction, Effect of blade dischar compressors, degree of reaction, v Module-3	gles, Effect of blade dischage angle on performance,	arge angle on energy transfer , General analysis of axial fl	and degree	
Steam Turbines: Classification, Sir	ngle stage impulse turbine	condition for maximum blade	efficiency, stag	
efficiency, Need and methods of			-	
utilization factor, Numerical Proble				
		utilization factor reaction sta	aina Numoria	
Reaction turbine – Parsons's turb	me, condition for maximum	i utilization factor, reaction sta	iging. Numeric	
Problems				
Module-4				
Hydraulic Turbines: Classification, Pelton Wheel – Principle of workin problems.	g, velocity triangles, design p			
Francis turbine – Principle of work Kaplan and Propeller turbines -				
		α triangles design personations		

Kaplan and Propeller turbines - Principle of working, velocity triangles, design parameters and Numerical Problems. Theory and types of Draft tubes.

Module-5

Centrifugal Pumps: Classification and parts of centrifugal pump, different heads and efficiencies of centrifugal pump, Theoretical head – capacity relationship, Minimum speed for starting the flow, Maximum suction lift, Net positive suction head, Cavitation, Need for priming, Pumps in series and parallel. Problems.

Centrifugal Compressors: Stage velocity triangles, slip factor, power input factor, Stage work, Pressure developed, stage efficiency and surging and problems.

Course Outcomes: At the end of the course, the student will be able to:

CO1: Model studies and thermodynamics analysis of turbomachines.

CO2: Analyse the energy transfer in Turbo machine with degree of reaction and utilisation factor.

CO3: Classify, analyse and understand various type of steam turbine.

CO4: Classify, analyse and understand various type of hydraulic turbine.

CO5: Understand the concept of radial power absorbing machine and the problems involved during its operation.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	ok/s			
1	An Introduction to Energy Conversion, Volume III, Turbo machinery	V. Kadambi and Manohar Prasad	New Age International Publishers	reprint 2008
2	Turbo Machines	B.U.Pai	Wiley India Pvt, Ltd	1 st Edition
3	Turbo machines	M. S. Govindegowda and A. M. Nagaraj	M. M. Publications	7Th Ed, 2012
4	Fundamentals of Turbo Machinery	B.K Venkanna	PHI Publishers	
Referer	nce Books			
1	Turbines, Compressors & Fans	S. M. Yahya	Tata McGraw Hill Co. Ltd	2nd edition, 2002
2	Principals of Turbo machines	D. G. Shepherd	The Macmillan Company	1964
3	Fluid Mechanics & Thermodynamics of Turbo machines	S. L. Dixon	Elsevier	2005

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - V

FLUID POWER ENGINEERING

Course Code	18ME55	CIE Marks	40
Teaching Hours /Week (L:T:P)	3:0:0	SEE Marks	60
Credits	03	Exam Hours	03

Course Learning Objectives:

- To provide an insight into the capabilities of hydraulic and pneumatic fluid power.
- To understand concepts and relationships surrounding force, pressure, energy and power in fluid power systems.
- To examine concepts cantering on sources of hydraulic power, rotary and linear actuators, distribution systems, hydraulic flow in pipes, and control components in fluid power systems.
- Exposure to build and interpret hydraulic and pneumatic circuits related to industrial applications.

• To familiarize with logic controls and trouble shooting.

Module-1

Introduction to fluid power systems

Fluid power system: components, advantages and applications. Transmission of power at static and dynamic states. Pascal's law and its applications.

Fluids for hydraulic system: types, properties, and selection. Additives, effect of temperature and pressure on hydraulic fluid. Seals, sealing materials, compatibility of seal with fluids. Types of pipes, hoses, and quick acting couplings. Pressure drop in hoses/pipes. Fluid conditioning through filters, strainers; sources of contamination and contamination control; heat exchangers.

Module-2

Pumps and actuators

Pumps: Classification of pumps, Pumping theory of positive displacement pumps, construction and working of Gear pumps, Vane pumps, Piston pumps, fixed and variable displacement pumps, Pump performance characteristics, pump selection factors, problems on pumps.

Accumulators: Types, and applications of accumulators. Types of Intensifiers, Pressure switches /sensor, Temperature switches/sensor, Level sensor.

Actuators: Classification cylinder and hydraulic motors, Hydraulic cylinders, single and double acting cylinder, mounting arrangements, cushioning, special types of cylinders, problems on cylinders.

Construction and working of rotary actuators such as gear, vane, piston motors, and Hydraulic Motor. Theoretical torque, power, flow rate, and hydraulic motor performance; numerical problems. Symbolic

Module-3

Components and hydraulic circuit design Components:

Classification of control valves, Directional Control Valves-symbolic representation, constructional features of poppet, sliding spool, rotary type valves solenoid and pilot operated DCV, shuttle valve, and check valves.

Pressure control valves - types, direct operated types and pilot operated types.

Flow Control Valves -compensated and non-compensated FCV, needle valve, temperature compensated, pressure compensated, pressure and temperature compensated FCV, symbolic representation.

Hydraulic Circuit Design: Control of single and Double -acting hydraulic cylinder, regenerative circuit, pump unloading circuit, counter balance valve application, hydraulic cylinder sequencing circuits, hydraulic circuit for force multiplication; speed control of hydraulic cylinder- metering in, metering out and bleed off circuits. Pilot pressure operated circuits.

Module-4

Pneumatic power systems

Introduction to Pneumatic systems: Pneumatic power system, advantages, limitations, applications, Choice of working medium. Characteristics of compressed air and air compressors. Structure of pneumatic control System, fluid conditioners-dryers and FRL unit.

Pneumatic Actuators: Linear cylinder – types of cylinders, working, end position cushioning, seals, mounting arrangements, and applications. Rotary cylinders- types, construction and application, symbols.

Pneumatic Control Valves: DCV such as poppet, spool, suspended seat type slide valve, pressure control valves, flow control valves, types and construction, use of memory valve, Quick exhaust valve, time delay valve, shuttle valve, twin pressure valve, symbols.

Module-5

Pneumatic control circuits

Simple Pneumatic Control: Direct and indirect actuation pneumatic cylinders, speed control of cylinders - supply air throttling and exhaust air throttling.

Signal Processing Elements: Use of Logic gates - OR and AND gates in pneumatic applications. Practical examples involving the use of logic gates.

Multi- Cylinder Application: Coordinated and sequential motion control, motion and control diagrams. Signal elimination methods, Cascading method- principle, Practical application examples (up to two cylinders) using cascading method (using reversing valves).

Electro- Pneumatic Control: Principles - signal input and output, pilot assisted solenoid control of directional control valves, use of relay and contactors. Control circuitry for simple signal cylinder application.

Learning Assignment:

The faculty will allocate one or more of the following experiments from group A and B to group of students (containing not more than four students in a group):

Group A: Experiments on hydraulic trainer:

- a. Speed control circuit using metering in and metering out technique
- b. Regenerative and sequencing circuits.
- c. Extend-Retract and Stop system of a linear actuator
 - d. Rapid Traverse and Feed circuit.
- Group B: Experiments on pneumatic trainer:
 - a. Automatic reciprocating circuit
 - b. Speed control circuit
 - c. Pneumatic circuit involving shuttle valve/ quick exhaust valve
 - d. Electro pneumatic valves and circuit

Students should build up the above circuits on computer using software and simulate the flow of fluid during the operation. Afterwards, they themselves can physically connect the circuit on the hydraulic/pneumatic trainer and run the circuit. Record of experiments shall be submitted in the form of journal. Due credit must be given for this assignment.

Course Outcomes: At the end of the course, the student will be able to:

- CO1: Identify and analyse the functional requirements of a fluid power transmission system for a given application.
- CO2: Visualize how a hydraulic/pneumatic circuit will work to accomplish the function.
- CO3: Design an appropriate hydraulic or pneumatic circuit or combination circuit like electro-hydraulics, electro- pneumatics for a given application.
- CO4: Select and size the different components of the circuit.
- CO5: Develop a comprehensive circuit diagram by integrating the components selected for the given application.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	ok/s			•
1	Fluid Power with applications	Anthony Esposito	Pearson edition	2000
2	Oil Hydraulics	Majumdar S.R	Tala McGRawHllL	2002
3	Pneumatic systems - Principles and Maintenance	Majumdar S.R	Tata McGraw-Hill	2005
Referer	ice Books			
1	Industrial Hydraulics	John Pippenger, Tyler Hicks	McGraw Hill International Edition	1980
2	Hydraulics and pneumatics	Andrew Par	Jaico Publishing House	2005
3	Fundamentals of Pneumatics, Vol I, II and III.	FESTO		
4	Hydraulic Control Systems	Herbert E. Merritt	John Wiley and Sons, Inc	
5	Introduction to Fluid power	Thomson	PrentcieHall	2004
6	Fundamentals of fluid power control	John Watton	Cambridge University press	2012

B. E. MECHANICAL ENGINEERING

Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

SEMESTER - V

OPERATIONS MANAGEMENT

Course Code	18ME56	CIE Marks	40
Teaching Hours/Week (L:T:P)	3:0:0	SEE Marks	60
Credits	03	Exam Hours	03

Course Learning Objectives:

- To get acquainted with the basic aspects of Production Management.
- The expose the students to various aspects of planning, organising and controlling operations Management.
- To understand different operational issues in manufacturing and services organisations.
- To understand different problem-solving methodologies and Production Management techniques.

Module-1

Introduction, Functions within business organizations, the operation management function, Classification of production systems, Productivity, factors affecting productivity.

Decision Making: The decision process, characteristics of operations decisions, use of models, decision making environments, graphical linear programming, analysis and trade-offs.

Module-2

Forecasting: Steps in forecasting process, approaches to forecasting, forecasts based on judgment and opinion, analysis of time series data, accuracy and control of forecasts, choosing a forecasting technique, elements of a good forecast.

Module-3

Capacity & Location Planning: Importance of capacity decisions, defining and measuring capacity, determinants of effective capacity, determining capacity requirement, developing capacity alternatives, evaluating alternatives, Need for location decisions, nature of locations decisions, general procedure for making locations decisions, evaluating locations decisions, facilities layout – need for layout decisions, types of processing.

Module-4

Aggregate Planning & Master Scheduling: Aggregate planning – Nature and scope of aggregate planning, strategies of aggregate planning, techniques for aggregate planning – graphical and charting techniques, mathematical techniques. The master production schedule, Master scheduling process, Master scheduling methods.

Module-5

Material Requirement Planning (MRP): Dependent versus independent demand, an overview of MRP – MRP inputs and outputs, MRP processing, ERP capacity requirement planning, benefits and limitations of MRP.

Purchasing and Supply Chain Management (SCM): Introduction, Importance of purchasing and SCM, the procur process, Concept of tenders, Approaches to SCM, Vendor development.

Course Outcomes: At the end of the course, the student will be able to:

CO1: Explain the concept and scope of operations management in a business context

CO2: Recognize the role of Operations management among various business functions and its role in the organizations' strategic planning and gaining competitive advantage.

CO3: Analyze the appropriateness and applicability of a range of operations management systems/models in decision making.

CO4: Assess a range of strategies for improving the efficiency and effectiveness of organizational operations. CO5: Evaluate a selection of frameworks used in the design and delivery of operations

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.

- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks:

- 1. "Operation Management, Author- Joseph G Monks McGrew Hill Publication, International Edition-1987.
- 2. "Production and Operation Management", Author-Pannerselvam R. PHI publications, 2nd edition
- 3. "An Introductory book on lean System, TPS Yasuhiro Modern.

Reference Books:

- **1.** "Production and Operation Management" Chary S. N. TataMcGrew Hill 3rd edition.
- 2. "Production and Operations Management", Everett E. Adams, Ronald J. Ebert, Prentice Hall of India Publications, Fourth Edition.
- 3. Modern Production/Operations Management, Buffia, Wiely India Ltd 4th Edition.

	Choice Based	B. E. MECHANICAL Credit System (CBCS) and	d Outcome Based E	ducation (OBE)	
		SEMESTE			
		FLUID MECHANICS AN			
Course Co		18MEL57		E Marks	40
	Hours/Week (L:T:P)	0:2:2		E Marks	60
Credits	earning Objectives:	02	Ex	am Hours	03
• 1 r • E d	This course will provide measuring devices, calib nergy conversion princ liscussed. Application o	a basic understanding of ration and losses associa ples, analysis and unde f these concepts for th it using characteristic cu	ted with these devi erstanding of hydra nese machines will	ces. ulic turbines a	nd pumps will be
SI. No.			periments		
			PART A		
1		n of instruments and star		ea	
2		fficient of friction of flow			
3		or losses in flow through			
4	Application of mome curved blades	ntum equation for deter	rmination of coeffic	ient of impact	of jets on flat and
5	Calibration of flow m	easuring devices.			
			PART B		
6	Performance on hydr	aulic Turbines a. Pelton v	wheel b. Francis Tur	bine c. Kaplan T	urbines
7	Performance hydraul pump.	ic Pumps d. Single stage	and Multi stage ce	entrifugal pump	os e. Reciprocating
8		a two stage Reciprocatin	g Air Compressor.		
9	Performance test on				
		P/	ART C (OPTIONAL)		
10	Visit to Hydraulic Pov	ver station/ Municipal W		nd Case Studie	5
11		t section models of Hydr	•		
Course O		the course, the student v		·	
		ermine the coefficient o		neasuring devid	ces.
CO2: Con	duct experiments on hy	draulic turbines and pum	nps to draw characte	eristics.	
	t basic performance para situations.	ameters of hydraulic turk	pines and pumps an	d execute the k	nowledge in real
CO4: Det	ermine the energy flow	pattern through the hyd	raulic turbines and p	oumps.	
	· · ·	ards preventive mainten	ance of hydraulic m	achines.	
Conduct	of Practical Examination	n:			
		to be included for practi			
	•	ructions printed on the c	over page of answe	er script to be s	trictly adhered by
the exam					
	• •	ent from the questions le	· · ·		
		ed only once and 15% Ma	arks allotted to the	procedure part	to be made zero.
Scheme of	of Examination:				
		uestion from part A:	30 Marks		
		uestion from part B:	50 Marks		
	Viva -		0 Marks		
	Total	: 10	00 Marks		

		ed Credit System (CBCS) ar SEMEST			
		ENERGY CONVERSIO			
Course Co	ode	18MEL58	(CIE Marks	40
Teaching	Hours/Week (L:T:P)	0:2:2	5	SEE Marks	60
Credits		02	E	Exam Hours	03
Course L	earning Objectives:				
		ide a basic understanding o	of fuel properties a	nd its measurem	ients using variou
	types of measuring d				
		inciples, analysis and unde	-	-	• •
	using characteristic c	r these machines will be de	emonstrated. Perio	rmance analysis	will be carried of
		l C Engines will be measure	d and compared w	ith the standards	
Sl. No.			kperiments		
31. INU.		L/	PART A		
1	Lab lavout calibra	tion of instruments and sta		ssed	
2	-	Flash point and Fire poir			sky and Marten
-		nd's (Open Cup) Apparatus.	-		
3		Calorific value of solid, liqu		ls.	
4	Determination of	Viscosity of lubricating oil u	using Redwoods, Sa	vbolt and Torsio	n Viscometers.
5		opening diagram of an I.C.	•	<u></u>	
-			PART B		
6	Performance Tests on I.C. Engines, Calculations of IP, BP, Thermal efficiency, Volumetric efficiency				
	Mechanical efficie	ency, SFC, FP, A:F Ratio, hea	t balance sheet for		
	a. Fo	our stroke Diesel Engine			
	b. Fe	our stroke Petrol Engine			
		Iulti Cylinder Diesel/Petrol I	Engine, (Morse test	t)	
		wo stroke Petrol Engine	0 / (,	
		sion Ratio I.C. Engine.			
7		Exhaust Emissions of Petro	ol engine.		
8		Exhaust Emissions of Diese			
		P	PART C (OPTIONAL)		
9	Visit to Automobi	e Industry/service stations	•		
10		$p\theta$, pV plots using Compu		est rig	
		l of the course, the student			
	-	ts to determine the proper		S.	
	•	its on engines and draw cha		the knowledge i	n inductry
		ance parameters of I.C. Eng nission, factors affecting th			
	itenance of IC engine			is competency to	
	of Examination:				
		NE question from part A:	30 Marks		
		NE question from part B:	50 Marks		
			20 Marks		
	l	otal : :	100 Marks		

	Choice Based Credit	• • •	tcome Based Education (OBE	E)
		SEMESTER – V ENVIRONMENTAL S		
Course C	ode	18CIV59	CIE Marks	40
	g Hours / Week (L:T:P)	(1:0:0)	SEE Marks	60
Credits		01	Exam Hours	02
Module	- 1	01	Examinours	02
Biodiver Deforest Module		s; Threats and Cons	ervation of biodiversity, F	orest Wealth, and
and Win Natural	d. 02 Hrs Resource Management (Conce and Carbon Trading.			
Module	- 3			
Industria Module Global E Climate	Aanagement & Public Health A Il and Municipal Sludge. - 4 Environmental Concerns (Conc Change; Acid Rain; Ozone Deple ation of people, Environmental	cept, policies and cas etion; Radon and Fluor	e-studies): Ground water d	epletion/recharging
Module Latest D Remote	- 5 Developments in Environment Sensing, Environment Impa	al Pollution Mitigation		• •
Module Latest D Remote Environn Field wo Waste w Course C • (• (5 Developments in Environment Sensing, Environment Impanental Stewardship- NGOs. 03 ork: Visit to an Environmental E ater treatment Plant; ought to P Dutcomes: At the end of the cou CO1: Understand the principles ssues on a global scale, CO2: Develop critical thinking ar or question related to the enviro CO3: Demonstrate ecology know	al Pollution Mitigation act Assessment, Env Hrs Engineering Laboratory be Followed by unders urse, students will be a of ecology and enviror and/or observation skills onment.	ironmental Management S or Green Building or Water tanding of process and its brid ble to: mental issues that apply to a s, and apply them to the an	Systems, ISO14001 Treatment Plant or ef documentation. ir, land, and water alysis of a problem
Module Latest D Remote Environn Field wo Waste w Course C • (• (5 Developments in Environment Sensing, Environment Impanental Stewardship- NGOs. 03 ork: Visit to an Environmental E tater treatment Plant; ought to B Dutcomes: At the end of the cou CO1: Understand the principles ssues on a global scale, CO2: Develop critical thinking ar principles to the environmental to the envi	al Pollution Mitigation act Assessment, Env Hrs Engineering Laboratory be Followed by unders urse, students will be a of ecology and enviror and/or observation skills onment.	ironmental Management S or Green Building or Water tanding of process and its brid ble to: mental issues that apply to a s, and apply them to the an	Systems, ISO14001 Treatment Plant o ef documentation. ir, land, and water alysis of a problem
Module Latest D Remote Environn Field wo Waste w Course C • (• (• (• (• (• (• (• (• (• (5 Developments in Environment Sensing, Environment Impanental Stewardship- NGOs. 03 ork: Visit to an Environmental E ater treatment Plant; ought to P Dutcomes: At the end of the cou CO1: Understand the principles ssues on a global scale, CO2: Develop critical thinking ar or question related to the enviro CO3: Demonstrate ecology know	Tal Pollution Mitigation act Assessment, Envelopment, E	or Green Building or Water tanding of process and its brid ble to: mental issues that apply to a and apply them to the an lationship between biotic and	Systems, ISO14001 Treatment Plant o ef documentation. ir, land, and water alysis of a problem d abiotic
Module Latest D Remote Environn Field wo Waste w Course C i i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 Developments in Environment Sensing, Environment Impanental Stewardship- NGOs. 03 ork: Visit to an Environmental E tater treatment Plant; ought to P Dutcomes: At the end of the cou CO1: Understand the principles ssues on a global scale, CO2: Develop critical thinking ar or question related to the enviro CO3: Demonstrate ecology know components.	act Assessment, Env Hrs Engineering Laboratory be Followed by unders urse, students will be a of ecology and enviror nd/or observation skills onment. wledge of a complex re	or Green Building or Water tanding of process and its brid ble to: mental issues that apply to a and apply them to the an lationship between biotic and	Systems, ISO14001 Treatment Plant o ef documentation. ir, land, and water alysis of a problem d abiotic
Module Latest D Remote Environn Field wo Waste w Course C • (• (• (• (• (• (• (• (• (• (5 Developments in Environment Sensing, Environment Impanental Stewardship- NGOs. 03 ork: Visit to an Environmental E ater treatment Plant; ought to B Dutcomes: At the end of the cou CO1: Understand the principles ssues on a global scale, CO2: Develop critical thinking ar for question related to the enviro CO3: Demonstrate ecology know components.	act Assessment, Env Hrs Engineering Laboratory be Followed by unders urse, students will be a of ecology and enviror nd/or observation skills onment. wledge of a complex re	or Green Building or Water tanding of process and its brid ble to: mental issues that apply to a and apply them to the an lationship between biotic and	Systems, ISO14001 Treatment Plant o ef documentation. ir, land, and water alysis of a problem d abiotic
Module Latest D Remote Environn Field wo Waste w Course C • (• (• (• (• (• (• (• (• (• (5 Developments in Environment Sensing, Environment Impanental Stewardship- NGOs. 03 ork: Visit to an Environmental E tater treatment Plant; ought to b Dutcomes: At the end of the cou CO1: Understand the principles ssues on a global scale, CO2: Develop critical thinking ar or question related to the enviro CO3: Demonstrate ecology know components. CO4: Apply their ecological know managers face when dealing wit	Fail Pollution Mitigation act Assessment, Environment, Environment Engineering Laboratory be Followed by unders urse, students will be a of ecology and enviror and/or observation skills onment. wledge of a complex re wledge to illustrate and th complex issues.	or Green Building or Water tanding of process and its brid ble to: mental issues that apply to a and apply them to the an lationship between biotic and	Systems, ISO14001 Treatment Plant o ef documentation. ir, land, and water alysis of a problem d abiotic
Module Latest D Remote Environn Field wo Waste w Course C • (• (• (• (• (• (• (• (• (• (5 Developments in Environment Sensing, Environment Impanental Stewardship- NGOs. 03 ork: Visit to an Environmental E <u>ater treatment Plant; ought to R</u> Ducomes: At the end of the cou CO1: Understand the principles ssues on a global scale, CO2: Develop critical thinking ar or question related to the enviro CO3: Demonstrate ecology know components. CO4: Apply their ecological know managers face when dealing with n paper pattern: The Question paper will have 10	Tail Pollution Mitigation act Assessment, Envi- Engineering Laboratory be Followed by underse urse, students will be a of ecology and enviror and/or observation skills onment. wledge of a complex re wledge to illustrate and th complex issues.	or Green Building or Water tanding of process and its brid ble to: mental issues that apply to a and apply them to the an lationship between biotic and	Systems, ISO14001 Treatment Plant o ef documentation. ir, land, and water alysis of a problem d abiotic
Module Latest D Remote Environn Field wo Waste w Course C • (• (• (• (• (• (• (• (• (• (5 Developments in Environment Sensing, Environment Impanental Stewardship- NGOs. 03 ork: Visit to an Environmental E tater treatment Plant; ought to P Dutcomes: At the end of the cou CO1: Understand the principles ssues on a global scale, CO2: Develop critical thinking ar or question related to the enviro CO3: Demonstrate ecology know components. CO4: Apply their ecological know managers face when dealing wit n paper pattern: The Question paper will have 10 Each question will be for 01 mar	cal Pollution Mitigation act Assessment, Environment, Environment, Engineering Laboratory be Followed by unders urse, students will be a of ecology and enviror and/or observation skills onment. wledge of a complex re wledge to illustrate and th complex issues.	ironmental Management S or Green Building or Water tanding of process and its brid ble to: mental issues that apply to a a and apply them to the an lationship between biotic and l graph a problem and describ	Systems, ISO14001 Treatment Plant o ef documentation. ir, land, and water alysis of a problem d abiotic
Module Latest D Remote Environn Field wo Waste w Course C • () • () • () • () • () • () • () • ()	5 Developments in Environment Sensing, Environment Impanental Stewardship- NGOs. 03 ork: Visit to an Environmental E <u>ater treatment Plant; ought to P</u> Ducomes: At the end of the cou CO1: Understand the principles ssues on a global scale, CO2: Develop critical thinking ar or question related to the enviro CO3: Demonstrate ecology know components. CO4: Apply their ecological know managers face when dealing with n paper pattern: The Question paper will have 10 Each question will be for 01 mar Student will have to answer all t	cal Pollution Mitigation act Assessment, Environment, Environment Engineering Laboratory be Followed by unders urse, students will be a of ecology and enviror and/or observation skills onment. wledge of a complex re wledge to illustrate and th complex issues. 00 objective questions. rks	ironmental Management S or Green Building or Water tanding of process and its brid ble to: mental issues that apply to a a and apply them to the an lationship between biotic and l graph a problem and describ	Systems, ISO14001 Treatment Plant o ef documentation. ir, land, and water alysis of a problem d abiotic
Module Latest D Remote Environn Field wo Waste w Course C • () • () • () • () • () • () • () • ()	5 Developments in Environment Sensing, Environment Impanental Stewardship- NGOs. 03 ork: Visit to an Environmental E tater treatment Plant; ought to P Dutcomes: At the end of the cou CO1: Understand the principles ssues on a global scale, CO2: Develop critical thinking ar or question related to the enviro CO3: Demonstrate ecology know components. CO4: Apply their ecological know managers face when dealing wit n paper pattern: The Question paper will have 10 Each question will be for 01 mar	cal Pollution Mitigation act Assessment, Environment, Environment Engineering Laboratory be Followed by unders urse, students will be a of ecology and enviror and/or observation skills onment. wledge of a complex re wledge to illustrate and th complex issues. 00 objective questions. rks	ironmental Management S or Green Building or Water tanding of process and its brid ble to: mental issues that apply to a a and apply them to the an lationship between biotic and l graph a problem and describ	Systems, ISO14001 Treatment Plant o ef documentation. ir, land, and water alysis of a problem d abiotic
Module Latest D Remote Environn Field wo Waste w Course C • () • () • () • () • () • () • () • ()	5 Developments in Environment Sensing, Environment Impanental Stewardship- NGOs. 03 ork: Visit to an Environmental E <u>ater treatment Plant; ought to P</u> Ducomes: At the end of the cou CO1: Understand the principles ssues on a global scale, CO2: Develop critical thinking ar or question related to the enviro CO3: Demonstrate ecology know components. CO4: Apply their ecological know managers face when dealing with n paper pattern: The Question paper will have 10 Each question will be for 01 mar Student will have to answer all t	cal Pollution Mitigation act Assessment, Environment, Environment Engineering Laboratory be Followed by unders urse, students will be a of ecology and enviror and/or observation skills onment. wledge of a complex re wledge to illustrate and th complex issues. 00 objective questions. rks	ironmental Management S or Green Building or Water tanding of process and its brid ble to: mental issues that apply to a a and apply them to the an lationship between biotic and l graph a problem and describ	Systems, ISO14001 Treatment Plant o ef documentation. ir, land, and water alysis of a problem d abiotic
Module Latest D Remote Environn Field wo Waste w Course C • () • () • () • () • () • () • () • ()	- 5 Developments in Environment Sensing, Environment Impanental Stewardship- NGOs. 03 ork: Visit to an Environmental E ater treatment Plant; ought to P Ducomes: At the end of the cou CO1: Understand the principles ssues on a global scale, CO2: Develop critical thinking ar or question related to the enviro CO3: Demonstrate ecology know components. CO4: Apply their ecological know managers face when dealing with n paper pattern: The Question paper will have 10 Each question will be for 01 mar Student will have to answer all t The Duration of Exam will be 2 h Title of the Book	al Pollution Mitigation act Assessment, Environment Engineering Laboratory be Followed by unders urse, students will be a of ecology and enviror and/or observation skills onment. wledge of a complex re wledge to illustrate and th complex issues. 00 objective questions. rks the questions in an OM nours. Name of the	ronmental Management S ror Green Building or Water tanding of process and its brid ble to: mental issues that apply to a s, and apply them to the an lationship between biotic and l graph a problem and describ R Sheet.	Systems, ISO14001 Treatment Plant o ef documentation. ir, land, and water alysis of a problem d abiotic be the realities that

2.	Environmental Studies	S M Prakash	Pristine Publishing House, Mangalore	3 rd Edition [,] 2018
3	Environmental Studies – From Crisis to Cure	R Rajagopalan	Oxford Publisher	2005
Refer	ence Books			
1	Principals of Environmental Science and Engineering	Raman Sivakumar	Cengage learning, Singapur.	2 nd Edition, 2005
2	Environmental Science – working with the Earth	G.Tyler Miller Jr.	Thomson Brooks /Cole,	11 th Edition, 2006
3	Text Book of Environmental and Ecology	Pratiba Sing, AnoopSingh& Piyush Malaviya	Acme Learning Pvt. Ltd. New Delhi.	1 st Edition

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - VI				
	FINITE ELEMENT ME	-		
Course Code	18ME61	CIE Marks	40	
Teaching Hours /Week (L:T:P)	3:2:0	SEE Marks	60	
Credits 04 Exam Hours 03				
 Course Learning Objectives: To learn the basic principles 	•	•		
To understand the design aSolve 1 D, 2 D and dynamic	•	••		
•		nts that represent engineering s al, thermal, dynamic problem to		
knowledge and skills neede	d to effectively evaluate fi	nite element analyses.		

Introduction to Finite Element Method: General steps of the finite element method. Engineering applications of finite element method. Advantages of the Finite Element Method.

Boundary conditions: Homogeneous and non-homogeneous for structural, heat transfer and fluid flow problems. Potential energy method, Rayleigh Ritz method, Galerkin's method, Displacement method of finite element formulation. Convergence criteria, Discretisation process, **Types of elements:** 1D, 2D and 3D, Node numbering, Location of nodes. **Strain-** displacement relations, Stress-strain relations, Plain stress and Plain strain conditions, temperature effects.

Interpolation models: Simplex, complex and multiplex elements, linear interpolation polynomials in terms of global coordinates 1D, 2D, 3D Simplex Elements.

Module-2

Introduction to the stiffness (Displacement) method: Introduction, Derivation of stiffness matrix, Derivation of stiffness matrix for a spring element, Assembly the total stiffness matrix by superposition. One-Dimensional Elements-Analysis of Bars and Trusses, Linear interpolation polynomials in terms of local coordinate's for1D, 2Delements. Higher order interpolation functions for 1D quadratic and cubic elements in natural coordinates,

, , Constant strain triangle, Four-Nodded Tetrahedral Element (TET 4), Eight-Nodded Hexahedral Element (HEXA 3 8), 2D iso-parametric element, Lagrange interpolation functions.

Numerical integration: Gaussian quadrature one point, two point formulae, 2D integrals. Force terms: Body force, traction force and point loads, Numerical Problems: Solution for displacement, stress and strain in 1D streight bars, stopped bars, and topped bars using elimination enpress and population and topped bars and topped bars using elimination enpress and population and topped bars and topped bars using elimination enpress and population and topped bars and topped bars using elimination enpress and population of **Module-3**

Beams and Shafts: Boundary conditions, Load vector, Hermite shape functions, Beam stiffness matrix based on Euler-Bernoulli beam theory, Examples on cantilever beams, propped cantilever beams, Numerical problems on simply supported, fixed straight and stepped beams using direct stiffness method with concentrated and uniformly distributed load.

Torsion of Shafts: Finite element formulation of shafts, determination of stress and twists in circular shafts. **Module-4**

Heat Transfer: Basic equations of heat transfer: Energy balance equation, Rate equation: conduction, convection, radiation, 1D finite element formulation using vibration method, Problems with temperature gradient and heat fluxes, heat transfer in composite sections, straight fins.

Fluid Flow: Flow through a porous medium, Flow through pipes of uniform and stepped sections, Flow through hydraulic net works.

Module-5

Axi-symmetric Solid Elements: Derivation of stiffness matrix of axisymmetric bodies with triangular elements, Numerical solution of axisymmetric triangular element(s) subjected to surface forces, point loads, angular velocity, pressure vessels.

Dynamic Considerations: Formulation for point mass and distributed masses, Consistent element mass matrix of one dimensional bar element, truss element, axisymmetric triangular element, quadrilateral element, beam element. Lumped mass matrix of bar element, truss element, Evaluation of eigen values and eigen vectors, Applications to bars, stepped bars, and beams.

Course Outcomes: At the end of the course, the student will be able to:

- CO1: Identify the application and characteristics of FEA elements such as bars, beams, plane and isoparametric elements.
- CO2: Develop element characteristic equation and generation of global equation.
- CO3: Formulate and solve Axi-symmetric and heat transfer problems.
- CO4: Apply suitable boundary conditions to a global equation for bars, trusses, beams, circular shafts, heat transfer, fluid flow, axi-symmetric and dynamic problems

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	ok/s			·
1	A first course in the Finite Element Method	Logan, D. L	Cengage Learning	6th Edition 2016
2	Finite Element Method in Engineering	Rao, S. S	Pergaman Int. Library of Science	5th Edition 2010
3	Finite Elements in Engineering	Chandrupatla T. R	PHI	2nd Edition 2013
Referen	ce Books			•
1	Finite Element Method	J.N.Reddy	McGraw -Hill International Edition	
2	Finite Elements Procedures	Bathe K. J	РНІ	
3	Concepts and Application of Finite Elements Analysis	Cook R. D., et al.	Wiley & Sons	4th Edition 2003
	Learning TU, E- learning			

	B. E. MECHANICAL ENG			
Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - VI DESIGN OF MACHINE ELEMENTS II				
Teaching Hours /Week (L:T:P)	3:2:0	SEE Marks	60	
Credits	04	Exam Hours	03	
Course Learning Objectives:		Examinouis	05	
 To understand various elements 	ments involved in a mecha	nical system		
		•	sign thom using	
•	-	of a mechanical system and de	sign them using	
appropriate techniques, co				
 To select transmission e 	elements like gears, belt	s, pulleys, bearings from the	manufacturers'	
catalogue.				
 To design a mechanical system 	stem integrating machine e	elements.		
• To produce assembly an	d working drawings of v	various mechanical systems in	volving machine	
elements like belts, pulley	s. gears. springs. bearings.	clutches and brakes.	Ū.	
Module-1	., 8			
Springs: Types of springs, spring sections. Tension and compression Leaf Springs: Stresses in leaf spring	n springs, concentric spring s, equalized stresses, and i	s; springs under fluctuating load		
Introduction to torsion and Bellevi				
Belts: Materials of construction o			and creep, initial	
tension, effect of centrifugal tensio	•			
Selection of flat and V belts- lei	ngth & cross section fror	n manufacturers' catalogues. C	Construction and	
application of timing belts.				
Wire ropes: Construction of wire r	opes, stresses in wire rope	s, and selection of wire ropes.		

Gear drives: Classification of gears, materials for gears, standard systems of gear tooth, lubrication of gears, and gear tooth failure modes.

Spur Gears: Definitions, stresses in gear tooth: Lewis equation and form factor, design for strength, dynamic load and wear.

Helical Gears: Definitions, transverse and normal module, formative number of teeth, design based on strength, dynamic load and wear.

Module-3

Bevel Gears: Definitions, formative number of teeth, design based on strength, dynamic load and wear. **Worm Gears:** Definitions, types of worm and worm gears, and materials for worm and worm wheel. Design based on strength, dynamic, wear loads and efficiency of worm gear drives.

Module-4

Design of Clutches: Necessity of a clutch in an automobile, types of clutch, friction materials and its properties. Design of single plate, multi-plate and cone clutches based on uniform pressure and uniform wear theories.

Design of Brakes: Different types of brakes, Concept of self-energizing and self-locking of brakes. Practical examples, Design of band brakes, block brakes and internal expanding brakes.

Module-5

Lubrication and Bearings: Lubricants and their properties, bearing materials and properties; mechanisms of lubrication, hydrodynamic lubrication, pressure development in oil film, bearing modulus, coefficient of friction, minimum oil film thickness, heat generated, and heat dissipated. Numerical examples on hydrodynamic journal and thrust bearing design.

Antifriction bearings: Types of rolling contact bearings and their applications, static and dynamic load carrying capacities, equivalent bearing load, load life relationship; selection of deep grove ball bearings from the manufacturers' catalogue; selection of bearings subjected to cyclic loads and speeds; probability of survival.

Assignment:

Course work includes a **Design project**. Design project should enable the students to design a mechanical system (like single stage reduction gear box with spur gears, single stage worm reduction gear box, V-belt and pulley drive system, machine tool spindle with bearing mounting, C-clamp, screw jack, etc.) A group of students (maximum number in a group should be 4) should submit assembly drawing and part drawings, completely dimensioned, indicating the necessary manufacturing tolerances, surface finish symbols and geometric tolerances wherever necessary. Design project must be completed using appropriate solid modeling software. Computer generated drawings must be submitted. Design calculations must be hand written and should be included in the report. Design project should be given due credit in internal assessment.

Course Outcomes: At the end of the course, the student will be able to:

CO1: Apply design principles for the design of mechanical systems involving springs, belts, pulleys, and wire ropes.

- CO2: Design different types of gears and simple gear boxes for relevant applications.
- CO3: Understand the design principles of brakes and clutches.
- CO4: Apply design concepts of hydrodynamic bearings for different applications and select Anti friction bearings for different applications using the manufacturers, catalogue.
- CO6: Apply engineering design tools to product design.

CO7: Become good design engineers through learning the art of working in a team.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	ok/s			
1	Shigley's Mechanical Engineering Design	Richard G. Budynas,and J. Keith Nisbett	McGraw-Hill Education	10 th Edition, 2015
2	Fundamentals of Machine Component Design	Juvinall R.C, and Marshek K.M	John Wiley & Sons	Third Edition 2007 Wiley student edition
3	Design of Machine Elements	V. B. Bhandari	Tata Mcgraw Hill	4th Ed 2016.
4	Design of Machine Elements-II	Dr.M H Annaiah Dr. J Suresh Kumar Dr.C N Chandrappa	New Age International (P) Ltd.,	1s Ed., 2016
Referen	ce Books	•		
1	Machine Design- an integrated approach	Robert L. Norton	Pearson Education	2 nd edition
2	Design and Machine Elements	Spotts M.F., ShoupT.E	Pearson Education	8 th edition, 2006

	(Schaum's Outline Series		Publishing Company Ltd	Edition, 2008
4	Elements of Machine Design	H.G.Patil, S.C.Pilli, R.R.Malagi, M.S.Patil	IK International	First edition,2019
5	Design of Machine ElementsVolume II	T. Krishna Rao	IK international publishing house	2013
6	Hand book of Mechanical Design	G. M. Maithra and L.V.Prasad	Tata McGraw Hill	2 nd edition,2004

[1] Design Data Hand Book, K.Lingaiah, McGraw Hill, 2nd edition, 2003.

[2] Design Data Hand Book, K.Mahadevan and Balaveera Reddy, CBS publication.

[3] Design Data Hand Book, H.G.Patil, I.K.International Publisher, 2010

[4] PSG Design Data Hand Book. PSG College of technology. Coimbatore.

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - VI

HEAT TRANSFER				
Course Code	18ME63	CIE Marks	40	
Teaching Hours /Week (L:T:P)	3:2:0	SEE Marks	60	
Credits	04	Exam Hours	03	

Course Learning Objectives:

- Study the modes of heat transfer.
- Learn how to formulate and solve 1-D steady and unsteady heat conduction problems.
- Apply empirical correlations for fully-developed laminar, turbulent internal flows and external boundary layer convective flow problems.
- Study the basic principles of heat exchanger analysis and thermal design.
- Understand the principles of boiling and condensation including radiation heat transfer related engineering problems.

Module-1

Introductory concepts and definitions: Modes of heat transfer: Basic laws governing conduction, convection, and radiation heat transfer; Types of boundary conditions. General three dimensional Heat Conduction Equation: Derivation of the equation in (i) Cartesian, coordinate only. Discussion of three dimensional Heat Conduction Equation in (ii) Polar and (iii) Spherical Co-ordinate Systems.

Steady-state one-dimensional heat conduction problems in Cartesian System: Steady-state one-dimensional heat conduction problems (i) without heat generation and (ii) constant thermal conductivity - in Cartesian system with various possible boundary conditions. Brief Introduction to variable thermal conductivity and heat generation [No numerical on variable thermal conductivity and heat generation] Thermal Resistances in Series and in Parallel. Critical Thickness of Insulation in cylinder and spheres Concept. Derivation

Module-2

Extended Surfaces or Fins: Classification, Straight Rectangular and Circular Fins, Temperature Distribution and Heat Transfer Calculations, Fin Efficiency and Effectiveness, Applications

Transient [Unsteady-state] heat conduction: Definition, Different cases - Negligible internal thermal resistance, negligible surface resistance, comparable internal thermal and surface resistance, Lumped body, Infinite Body and Semi-infinite Body, Numerical Problems, Heisler and Grober charts.

Module-3

Numerical Analysis of Heat Conduction: Introduction, one-dimensional steady conduction and one dimensional unsteady conduction, boundary conditions, solution methods.

Thermal Radiation: Fundamental principles - Gray, White, Opaque, Transparent and Black bodies, Spectral emissive power, Wien's displacement law, Planck's laws, Hemispherical Emissive Power, Stefan-Boltzmann law for the total emissive power of a black body, Emissivity and Kirchhoff's Laws, View factor, Net radiation exchange between parallel plates, concentric cylinders, and concentric spheres, Radiation Shield.

Module-4

Forced Convection: Boundary Layer Theory, Velocity and Thermal Boundary Layers, Prandtl number, Turbulent flow, Various empirical solutions, Forced convection flow over cylinders and spheres, Internal flows –laminar and turbulent flow solutions.

Free convection: Laminar and Turbulent flows, Vertical Plates, Vertical Tubes and Horizontal Tubes, Empirical solutions.

Module-5

Heat Exchangers: Definition, Classification, applications, LMTD method, Effectiveness - NTU method, Analytical Methods, Fouling Factors, Chart Solution Procedures for solving Heat Exchanger problems: Correction Factor Charts and Effectiveness-NTU Charts.

Introduction to boiling: pool boiling, Bubble Growth Mechanisms, Nucleate Pool Boiling, Critical Heat Flux in Nucleate Pool Boiling, Pool Film Boiling, Critical Heat Flux, Heat Transfer beyond the Critical Point, filmwise and dropwise Condensation.

Course Outcomes: At the end of the course, the student will be able to:

- CO1: Understand the modes of heat transfer and apply the basic laws to formulate engineering systems.
- CO2: Understand and apply the basic laws of heat transfer to extended surface, composite material and unsteady state heat transfer problems.
- CO3: Analyze heat conduction through numerical methods and apply the fundamental principle to solve radiation heat transfer problems.
- CO4: Analyze heat transfer due to free and forced convective heat transfer.
- CO5: Understand the design and performance analysis of heat exchangers and their practical applications, Condensation and Boiling phenomena.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	ok/s			
1	Principals of heat transfer	Frank Kreith, Raj M. Manglik, Mark S. Bohn	Cengage learning	Seventh Edition 2011.
2	Heat transfer, a practical approach	Yunus A. Cengel	Tata Mc Graw Hill	Fifth edition
Referen	ce Books		·	
1	Heat and mass transfer	Kurt C, Rolle	Cengage learning	second edition
2	Heat Transfer A Basic Approach	M. NecatiOzisik	McGraw Hill, New York	2005
3	Fundamentals of Heat and Mass Transfer	Incropera, F. P. and De Witt, D. P	John Wiley and Sons, New York	5th Edition 2006
4	Heat Transfer	Holman, J. P.	Tata McGraw Hill, New York	9th Edition 2008

Choice Based Cr	B. E. MECHANICAL ENGIN redit System (CBCS) and Outc	-	E)	
	SEMESTER – VI			
	Professional Elective	- 1		
NON-TRADITIONAL MACHINING				
Course Code	18ME641	CIE Marks	40	
Teaching Hours /Week (L:T:P)	3:0:0	SEE Marks	60	
Credits	03	Exam Hours	03	
Course Learning Objectives:	ł			
	related to modern machining	processes & their applicat	ions.	
	ices between conventional an			
	derstanding of non-traditiona			
-	process parameters and			
applications.	process parameters and	then innuence on perio	ormance and the	
		d in non traditional machi		
· · ·	arious types of energy involve		ning processes.	
Module-1	additional Network (1997)			
Introduction to Non-traditional ma	-		•	
traditional and non-traditional				
classification based on nature o		-		
processes, Specific advantages, lin	nitations and applications of n	on-traditional machining p	processes.	
Module-2				
Ultrasonic Machining (USM): Inte Effect of amplitude and frequence			•	
Process characteristics: Material r		-		
limitations of USM.				
Abrasive Jet Machining (AJM): In	troduction. Equipment and p	rocess of material remova	al, process variable	
carrier gas, type of abrasive, w				
romoval rate Nossla waar acours	Ofood finish Analisatio	no odvortogos O limitotio		
Module-3		atala af alastas akasata		
ELECTROCHEMICAL MACHINING		-	-	
equipment, elements of ECM ope	-			
rate, accuracy, surface finish. Proc	-			
piece, velocity of electrolyte flo				
electrolytes. ECM Tooling: ECM to				
Electrochemical grinding and elec	trochemical honing process.	Advantages, disadvantage	s and application of	
ECG, ECH.				
CHEMICAL MACHINING (CHM): 1		sists (maskants) Etchants		
	• •		••	
	• •		••	
machining process-chemical blan	nking process, chemical milli	ng process. Process char	acteristics of CHN	
machining process-chemical blan material removal rate, accuracy	nking process, chemical milli	ng process. Process char	acteristics of CHN	
machining process-chemical blan material removal rate, accuracy machining process.	nking process, chemical milli	ng process. Process char	acteristics of CHN	
machining process-chemical blan material removal rate, accuracy machining process. Module-4	nking process, chemical milli y, surface finish, advantage	ng process. Process char s, limitations and applic	acteristics of CHN ations of chemic	
machining process-chemical blan material removal rate, accuracy machining process. Module-4 ELECTRICAL DISCHARGE MACHIN	nking process, chemical milli y, surface finish, advantage IING (EDM): Introduction, me	ng process. Process char s, limitations and applic echanism of metal remove	acteristics of CHN ations of chemic al, EDM equipmen	
machining process-chemical blan material removal rate, accuracy machining process. Module-4 ELECTRICAL DISCHARGE MACHIN spark erosion generator (relaxatio	nking process, chemical milli y, surface finish, advantage IING (EDM): Introduction, me on type), dielectric medium-it	ng process. Process char s, limitations and applic echanism of metal remove ts functions & desirable p	acteristics of CHN ations of chemic al, EDM equipmen roperties, electroc	
machining process-chemical blan material removal rate, accuracy machining process. Module-4 ELECTRICAL DISCHARGE MACHIN spark erosion generator (relaxatio feed control system. Flushing typ	iking process, chemical milli y, surface finish, advantage IING (EDM): Introduction, me on type), dielectric medium-it pes; pressure flushing, suction	ng process. Process char s, limitations and applic echanism of metal remove ts functions & desirable p n flushing, side flushing, p	acteristics of CHM cations of chemic al, EDM equipmen properties, electroo ulsed flushing. EDI	
machining process-chemical blan material removal rate, accuracy machining process. Module-4 ELECTRICAL DISCHARGE MACHIN spark erosion generator (relaxatio feed control system. Flushing typ process parameters: Spark freque	Nking process, chemical milli y, surface finish, advantage IING (EDM): Introduction, me on type), dielectric medium-it pes; pressure flushing, suction ency, current & spark gap, su	ng process. Process char s, limitations and applic echanism of metal remove ts functions & desirable p n flushing, side flushing, p rface finish, Heat Affected	acteristics of CHN cations of chemic al, EDM equipmen properties, electroc ulsed flushing. EDI	
machining process-chemical blan material removal rate, accuracy machining process. Module-4 ELECTRICAL DISCHARGE MACHIN spark erosion generator (relaxation feed control system. Flushing typ process parameters: Spark freque limitations & applications of EDM,	Nking process, chemical milli y, surface finish, advantage IING (EDM): Introduction, me on type), dielectric medium-it bes; pressure flushing, suction ency, current & spark gap, su Electrical discharge grinding,	ng process. Process char s, limitations and applic echanism of metal remove ts functions & desirable p n flushing, side flushing, p rface finish, Heat Affected Traveling wire EDM.	acteristics of CHN ations of chemic al, EDM equipmen properties, electroc ulsed flushing. EDI d Zone. Advantage	
machining process-chemical blan material removal rate, accuracy machining process. Module-4 ELECTRICAL DISCHARGE MACHIN spark erosion generator (relaxation feed control system. Flushing typ process parameters: Spark freque limitations & applications of EDM, PLASMA ARC MACHINING (PAM)	Nking process, chemical milli y, surface finish, advantage IING (EDM): Introduction, me on type), dielectric medium-it bes; pressure flushing, suction ency, current & spark gap, su . Electrical discharge grinding, : Introduction, non-thermal ge	ng process. Process char s, limitations and applic echanism of metal remove ts functions & desirable p n flushing, side flushing, p rface finish, Heat Affected Traveling wire EDM. eneration of plasma, equip	acteristics of CHN sations of chemic al, EDM equipmen properties, electroo ulsed flushing. EDI d Zone. Advantage	
machining process-chemical blan material removal rate, accuracy machining process. Module-4 ELECTRICAL DISCHARGE MACHIN spark erosion generator (relaxation feed control system. Flushing typ process parameters: Spark freque limitations & applications of EDM,	INAN PROCESS, Chemical milli y, surface finish, advantage INAG (EDM): Introduction, me on type), dielectric medium-it pes; pressure flushing, suction ency, current & spark gap, su Electrical discharge grinding, : Introduction, non-thermal ge process parameters, process	ng process. Process char s, limitations and applic echanism of metal remove ts functions & desirable p n flushing, side flushing, p rface finish, Heat Affected Traveling wire EDM. eneration of plasma, equip	acteristics of CHN sations of chemic al, EDM equipmer properties, electroo ulsed flushing. ED d Zone. Advantage	

LASER	BEAM MACHINING (LBM): In	troduction, generation o	f LASER, Equipment and r	nechanism of meta
	al, LBM parameters and charac		· · ·	
	RON BEAM MACHINING (EBM)			m of metal removal
	tions, advantages and limitatio			
Course	Outcomes: At the end of the c	ourse, the student will be	able to:	
	nderstand the compare tradition			gnize the need for
No	on- traditional machining proce	ess.		
CO2: U	nderstand the constructional fe	eatures, performance par	ameters, process character	ristics, applications,
	lvantages and limitations of US			
	entify the need of Chemical an		ning process along with the	e constructional
	atures, process parameters, pro			
	nderstand the constructional fe			
	plications, advantages and limit	•••		
-	nderstand the LBM equipment		aracteristics FBM equipm	ent and mechanism
	metal removal, applications, a			
	· · · · ·	uvantages and innitations	LDIVI & EDIVI.	
	on paper pattern:	a full quartienc corruing a	aud marks	
	he question paper will have ter		qual marks.	
	ach full question will be for 20			
	here will be two full questions		•	module.
	ach full question will have sub-		•	
• T	he students will have to answe	r five full questions, seled	ting one full question from	each module.
SI No	Title of the Book	Name of the Author/s	Name of the Publishe	r Edition and Year
Textbo	ok/s			
1	Modern Machining Process	by P.C Pandey and H S	McGraw Hill Education	2000
		Shah	India Pvt. Ltd.	
2	Production technology	HMT	McGraw Hill Education	2001
			India Pvt. Ltd	
	nce Books			
1	New Technology	Dr. Amitabha	The Institute of	2000
		Bhattacharyya	Engineers (India)	
2	Modern Machining process	Aditya		2002

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER – VI				
Professional Elective- 1				
	REFRIGERATION AND AIR	CONDITIONING		
Course Code	18ME642	CIE Marks	40	
Teaching Hours /Week (L:T:P)3:0:0SEE Marks60				
Credits 03 Exam Hours 03				
Course Learning Objectives	•			

Course Learning Objectives:

- Study the basic definition, ASHRAE Nomenclature for refrigerating systems.
- Understand the working principles and applications of different types of refrigeration systems.
- Study the working of air conditioning systems and their applications.
- Identify the performance parameters and their relations of an air conditioning system.

Module-1

Introduction to Refrigeration –Basic Definitions, ASHRAE Nomenclature, Air Refrigeration Cycles-reversed Carnot cycle, Bell-Coleman cycle analysis, Air Refrigeration systems-merits and demerits and applications: Aircraft refrigeration cycles, Joule Thompson coefficient and Inversion Temperature, Linde, Claude and Stirling cycles for liquefaction of air.

Industrial Refrigeration-Chemical and process industries, Dairy plants , Petroleum refineries, Food processing and food chain, Miscellaneous

Module-2

Vapour Compression Refrigeration System(VCRS): Comparison of Vapour Compression Cycle and Gas cycle, Vapour Compression Refrigeration system Working and analysis, Limitations, Superheat horn and throttling loss for various refrigerants, efficiency, Modifications to standard cycle – liquid-suction heat exchangers, Grindlay cycle and Lorenz cycle, Optimum suction condition for optimum COP Actual cycles with pressure drops, Complete Vapour Compression Refrigeration System, Multi-Pressure, Multi-evaporator systems or Compound Vapour Compression Refrigeration Systems – Methods like Flash Gas removal, Flash inter cooling and water Inter cooling.

Module-3

Vapour Absorption Refrigeration Systems: Absorbent – Refrigerant combinations, Water-Ammonia Systems, Practical problems, Lithium- Bromide System, Contrast between the two systems, Modified Version of Aqua-Ammonia System with Rectifier and Analyzer Assembly.Practical problems – crystallization and air leakage, Commercial systems

Other types of Refrigeration systems: Brief Discussion on (i) Steam-Jet refrigeration system and (ii) Thermoelectric refrigeration, pulse tube refrigeration, thermoacoustic refrigeration systems

Module-4

Refrigerants: Primary and secondary refrigerants, Designation of Refrigerants, Desirable properties of refrigerants including solubility in water and lubricating oil, material compatibility, toxicity, flammability, leak detection, cost, environment and performance issues Thermodynamic properties of refrigerants, Synthetic and natural refrigerants, Comparison between different refrigerants vis a vis applications, Special issues and practical implications Refrigerant mixtures – zeotropic and azeotropic mixtures

Refrigeration systems Equipment: Compressors, Condensers, Expansion Devices and Evaporators, A brief look at other components of the system.

Module-5

Air-Conditioning: Introduction to Air-Conditioning, Basic Definition, Classification, power rating, Mathematical Analysis of Air-Conditioning Loads, Related Aspects, Different Air-Conditioning Systems-Central – Station Air-Conditioning System, Unitary Air-Conditioning System, Window Air-Conditioner and Packaged Air-Conditioner, Components related to Air-Conditioning Systems.

Transport air conditioning Systems: Air conditioning systems for automobiles (cars, buses etc.), Air conditioning systems for trains, Air conditioning systems for ships

Course Outcomes: At the end of the course, the student will be able to:

CO1: Illustrate the principles, nomenclature and applications of refrigeration systems.

CO2: Explain vapour compression refrigeration system and identify methods for performance improvement

CO3: Study the working principles of air, vapour absorption, thermoelectric and steam-jet and thermoacoustic refrigeration systems.

CO4: Estimate the performance of air-conditioning systems using the principles of psychrometry.

CO5: Compute and Interpret cooling and heating loads in an air-conditioning system.

CO6: Identify suitable refrigerant for various refrigerating systems.

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
Textbo	Textbook/s					
1	Refrigeration and Air- conditioning	Arora C.P	Tata Mc Graw –Hill, New Delhi	2 nd Edition, 2001		
2	Principles of Refrigeration	Roy J. Dossat	Wiley Limited			
3	Refrigeration and Air- conditioning	Stoecker W.F., and Jones J.W.,	Mc Graw - Hill, New Delhi	2nd edition, 1982.		
Refere	nce Books					
1	Heating, Ventilation and Air Conditioning	McQuistion	Wiley Students edition	5 th edition2000.		
2	Air conditioning	ΡΙΤΑ	Pearson	4th edition 2005		
3	Refrigeration and Air- Conditioning	S C Arora& S Domkundwar	Dhanpat Rai Publication			
4	Principles of Refrigeration	Dossat	Pearson	2006		
5	Refrigeration and Air- Conditioning	Manohar prasad				
6	Handbook of Air Conditioning and Refrigeration	Shan K. Wang	McGraw-Hill Education	2/e,2001		

Data Book:

1. Mathur M.L. & Mehta, Refrigerant and Psychrometric Properties (Tables & Charts) SI Units, F.S., Jain Brothers, 2008

E- Learning

<u>http://nptel.ac.in/courses/112105128/#</u>

E-Resources

• VTU, E- learning, MOOCS, Open courseware

B. E. MECHANICAL ENGINEERING					
Choice Based Cr	edit System (CBCS) and Out	come Based Education (OB	E)		
	SEMESTER – V	I			
	Professional Electi	ve- 1			
THEORY OF ELASTICITY					
Course Code	18ME643	CIE Marks	40		
Teaching Hours/Week (L:T:P)	3:0:0	SEE Marks	60		
Credits 03 Exam Hours 03					
Course Learning Objectives:					
To provide the student with the methometical and physical principles of Theory of Electicity					

- To provide the student with the mathematical and physical principles of Theory of Elasticity.
- To provide the student with various solution strategies while applying them to practical cases.

Analysis of Stress: Definition and notation of stress, Equations of equilibrium in differential form, Stress components on an arbitrary plane, Equality of cross shear, Stress invariants, Principal stresses, Octahedral stress, Planes of maximum shear, Stress transformation, Plane state of stress, Mohr's diagram for 3dimensional state of stress.

Module-2

Analysis of Strain: Displacement field, Strains in term of displacement field, Infinitesimal strain at a point, Engineering shear strains, Strain invariants, Principal strains, Octahedral strains, Plane state of strain, Compatibility equations, Strain transformation. Principle of super position, Saint Venant principle.

Module-3

Two-Dimensional classical elasticity: Cartesian co-ordinates, Relation between plane stress and plane strain, stress functions for plane stress and plane strain state, Airy's stress functions, investigation of Airy's stress function for simple beams. Bending of a narrow cantilever beam of rectangular cross section under edge load. Bending of simply supported beam under UDL, stress concentration, stress distribution in an infinite plate with a circular hole subjected to uniaxial and biaxial loads.

General equations in polar coordinates, stress distribution symmetrical about an axis, Thick wall cylinder subjected to internal and external pressures.

Module-4

Stress analysis in Axisymmetric body: Stresses in rotating discs of uniform thickness and cylinders. Numerical Problems.

Torsion: Torsion of circular, elliptical and triangular bars, Prandtl's membrane analogy, Torsion of thin walled thin tubes, Torsion of thin walled multiple cell closed sections.

Module-5

Thermal stress: Thermo elastic stress strain relations, equations of equilibrium, thermal stresses in thin circular discs and in long circular cylinders.

Course Outcomes: At the end of the course, the student will be able to:

CO1: Understand the Basic field equations of linear elastic solids, force, stress, strain and equilibrium in solids. CO2: Analyse the 2D structural elements, beams, cylinders.

CO3: Use analytical techniques to predict deformation, internal force and failure of simple solids and structural

components.

CO4: Analyse the axisymmetric structural elements.

CO5: Analyse the structural members subjected to torsion

CO6: Determine the thermal stresses in plain stress and plane stain conditions.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	ok/s			
1	Theory of Elasticity	S. P. Timoshenko and J. N Gordier	Mc-Graw Hill International	3rd edition, 2010
2	Advanced Mechanics of solids	L. S. Srinath	Tata Mc. Graw Hill	2009
Referen	ce Books			1
1	Theory of Elasticity	Sadhu Singh	Khanna Publications	2004
2	Applied Elasticity	T.G. Seetharamuand Govindaraju	Interline Publishing	2008.

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER – VI Professional Elective- 1 ADAVNCED VIBRATIONS

Course Code	18ME644	CIE Marks	40
Teaching Hours /Week (L:T:P)	3:0:0	SEE Marks	60
Credits	03	Exam Hours	03

Course Learning Objectives:

- To enable the students to understand the theoretical principles of vibration and vibration analysis techniques for the practical solution of vibration problems.
- To enable the students to understand the importance of vibrations in mechanical design of machine parts subject to vibrations
- To make free and forced (harmonic, periodic, non-periodic) vibration analysis of single and multidegree of freedom linear systems.
- Be able to write the differential equation of motion of vibratory systems.

Module-1

Forced vibrations (1DOF): Introduction, analysis of forced vibration with constant harmonic excitation, MF, rotating and reciprocating unbalances, excitation of support (Relative and absolute amplitudes), force and motion transmissibility, energy dissipated due to damping and numerical problems.

Systems with 2DOF: Principal modes of vibrations, normal mode and natural frequencies of systems (Damping is not included), simple spring-mass systems, masses on tightly stretched strings, double pendulum, tensional systems, combined rectilinear and angular systems, geared systems and numerical problems.

Module-2

Numerical methods for multi DOF systems: Maxwell's reciprocal theorem, influence coefficients, Rayleigh's method, Dunkerley's method, stodola method, orthogonality principle, method of matrix iteration and numerical.

Modal analysis and condition monitoring: signal analysis, dynamic testing of machines and structures, Module-3

Vibration measuring instruments and whirling of shafts: seismic instruments, vibrometers, accelerometer, frequency measuring instruments and numerical. Whirling of shafts with and without damping.

Vibration Control: Introduction, Vibration isolation theory, Vibration isolation and motion isolation for harmonic excitation, practical aspects of vibration analysis, vibration isolation, Dynamic vibration absorbers and Vibration dampers.

Module-4

Transient Vibration of single Degree-of freedom systems: Impulse excitation, arbitrary excitation, Laplace transforms formulation, Pulse excitation and rise time, Shock response spectrum, Shock isolation.

Noise Engineering: Subjective response of sound: Frequency and sound dependent human response; the decibel scale; relationship between , sound pressure level(SPL), sound power level and sound intensity scale; relationship between addition, subtraction and averaging, sound spectra and Octave band analysis ; loudness; weighting networks; equivalent sound level, auditory effects of noise; hazardous noise, exposure due to machines and equipment; hearing conservation and damage risk criteria, daily noise doze.

Module-5

Noise: Sources, Isolation and control: Major sources of noise on road and in industries, noise due to construction equipment and domestic appliances, industrial noise control, strategies-noise control at source (with or without sound enclosures), noise control along the path (with or without partitions and acoustic barriers); noise control at the receiver, ear defenders, earplugs, semi-insert protectors.

Course Outcomes: At the end of the course, the student will be able to:

CO1: Characterize the single and multi-degrees of freedom systems subjected to free and forced vibrations with

and without damping.

- CO2: Apply the method of vibration measurements and its controlling.
- CO3: Determine vibratory responses of SDOF and MDOF systems to harmonic, periodic and non-periodic excitation.

CO4: Analyze the mathematical model of a linear vibratory system to determine its response.

CO5: Obtain linear mathematical models of reallife engineering systems.

CO6: Apply the principles of vibration and noise reduction techniques to real life engineering problems.

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.

• The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	ok/s			
1	Mechanical Vibrations	S. S. Rao	Pearson Education	
2	Fundamentals of Mechanical Vibration	S. Graham Kelly	McGraw-Hill	
3	Mechanical Vibrations	W.T. Thomson	Prentice Hill India	
4	Vibraitons and Acoustics – Measurements and signal	C Sujatha	Tata McGraw Hill	
Referen	ce Books			
1	Mechanical Vibrations	G. K. Grover	Nem Chand and Bros.	
2	Theory of Vibration with Application	William T. Thomson, Marie Dillon Dahleh, Chandramouli	Pearson Education	5th edition
3	Mechanical Vibrations	V. P. Singh	Dhanpat Rai & Company	
4	Mechanical Vibrations and Noise engineering	Amberkar A.G.	PHI	
E- LearnVTU, E	ing - learning		1	

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER – VI Professional Elective- 1

COMPOSITE MATERIALS TECHNOLOGYCourse Code18ME645CIE Marks40Teaching Hours/Week (L:T:P)3:0:0SEE Marks60Credits03Exam Hours03

Course Learning Objectives:

- To know the behaviour of constituents in the composite materials
- To Enlighten the students in different types of reinforcement
- To Enlighten the students in different types of matrices
- To develop the student's skills in understanding the different manufacturing methods available for composite material.
- To understand the various characterization techniques
- To illuminate the knowledge and analysis skills in applying basic laws in mechanics to the composite materials.

Module-1

Introduction to Composite Materials: Definition, classification & brief history of composite materials. **Constituent of composite materials:** Reinforcements, Matrix, Coupling agents, coatings & fillers.

Reinforcements: Introduction, Glass Fibers, Boron Fibers, Carbon Fibers, Organic Fibers, Ceramic Fibers, Whiskers, Other Non-oxide Reinforcements, Comparison of Fibers

Matrix Materials: Polymers, Metals and Ceramic Matrix Materials.

Interfaces: Wettability, Crystallographic nature of interface, types of bonding at the interface and optimum interfacial bond strength.

Module-2

Polymer Matrix Composites (PMC): Processing of PMC's; Processing of Thermoset Matrix Composites, Thermoplastic Matrix Composites, Sheet Moulding Compound and carbon reinforced polymer composites. Interfaces in PMC's, Structure & Properties of PMC's, applications

Metal Matrix Composites: Types of metal matrix composites, Important Metallic Matrices, Processing, Interfaces in Metal Matrix Composites, Properties & Applications.

Module-3

Ceramic Matrix Composites (CMC): Processing of CMC's; Cold Pressing & Sintering, Hot Pressing, Reaction Bonding Processes, Infiltration, Directed Oxidation, In Situ Chemical Reaction Technique, Sol-Gel, Polymer Infiltration & Pyrolysis, Electrophoretic Deposition, Self-Propagating High Temperature Synthesis. Interfaces, properties and applications of CMC's.

Carbon Fiber/Carbon Matrix Composites: Processing of Carbon/Carbon Composites, Oxidation protection of Carbon/Carbon Composites, Properties of Carbon/Carbon Composites, and application of Carbon/Carbon Composites.

Multi-filamentary Superconducting Composites: The Problem of Flux Pinning, Types of Super Conductor, Processing & structure of Multi filamentary superconducting composites. Applications of multi-filamentary superconducting composites.

Module-4

Nonconventional Composites: Introduction, Nanocomposites; Polymer clay nanocomposites, self healing composites, self-reinforced composites. Biocomposites, Laminates; Ceramic Laminates, Hybrid Composites. Performance/Characterization of Composites: Static Mechanical Properties; Tensile Properties, Compressive Properties, Flexural Properties, In-Plane Shear Properties, Interlaminar Shear Strength. Fatigue Properties; Tension–Tension Fatigue, Flexural Fatigue. Impact Properties; Charpy, Izod, and Drop-Weight Impact Test.

Micromechanics of Composites: Density, Mechanical Properties; Prediction of Elastic Constants, Micromechanical Approaches, Halpin-Tsai Equations, Transverse Stresses, Thermal properties. Numerical Problems.

Macromechanics of Composites: Introduction, Elastic constants of an isotropic material, elastic constants of a lamina, relationship between engineering constants and reduced stiffnesses and compliances.

Course Outcomes: At the end of the course, the student will be able to:

CO1: Use different types of manufacturing processes in the preparation of composite materials

CO2: Analyze the problems on macro mechanical 88ehavior of composites

CO3: Analyze the problems on micromechanical 88ehavior of Composites

CO4: Determine stresses and strains relation in composites materials.

CO5: Understand and effective use of properties in design of composite structures

CO6: Perform literature search on a selected advanced material topic.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	ok/s			
1	Composite Material Science and Engineering	Krishan K. Chawla	Springer	Third Edition First Indian Reprint 2015
2	Fibre-Reinforced Composites, Materials, Manufacturing, and Design	P.K. Mallick	CRC Press, Taylor & Francis Group	Third Edition
3	Mechanics of Composite Materials & Structures	MadhijitMukhopadhay	Universities Press	2004
Referer	ice Books			1
1	Mechanics of Composite materials	Autar K. Kaw	CRC Taylor & Francis	2nd Ed, 2005
2	Stress analysis of fiber Reinforced Composites Materials	Michael W, Hyer	Mc-Graw Hill International	2009
3	Mechanics of Composite Materials	.Robert M. Jones	Taylor & Francis	1999
E- Learr • VTU, I	h ing E- learning	1	1	1

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE)					
	SEMESTER –VI				
	OPEN ELECTIVE	A			
	NON CONVENTIONAL ENE	RGY SOURCES			
Course Code	18ME651	CIE Marks	40		
Teaching Hours/Week (L:T:P) 3:0:0 SEE Marks 60					
Credits 03 Exam Hours 03					
Course Learning Objectives:					

- To introduce the concepts of solar energy, its radiation, collection, storage and application.
- To introduce the concepts and applications of Wind energy, Biomass energy, Geothermal energy and ٠ Ocean energy as alternative energy sources.
- To explore society's present needs and future energy demands.
- To examine energy sources and systems, including fossil fuels and nuclear energy, and then focus on alternate, renewable energy sources such as solar, biomass (conversions), wind power, geothermal, etc.
- To get exposed to energy conservation methods.

Introduction: Energy source, India's production and reserves of commercial energy sources, need for nonconventional energy sources, energy alternatives, solar, thermal, photovoltaic. Water power, wind biomass, ocean temperature difference, tidal and waves, geothermal, tar sands and oil shale, nuclear (Brief descriptions); advantages and disadvantages, comparison (Qualitative and Quantitative).

Solar Radiation: Extra-Terrestrial radiation, spectral distribution of extra terrestrial radiation, solar constant, solar radiation at the earth's surface, beam, diffuse and global radiation, solar radiation data.

Measurement of Solar Radiation: Pyrometer, shading ring pyrheliometer, sunshine recorder, schematic diagrams and principle of working.

Module-2

Solar Radiation Geometry: Flux on a plane surface, latitude, declination angle, surface azimuth angle, hour angle, zenith angle, solar altitude angle expression for the angle between the incident beam and the normal to a plane surface (No derivation) local apparent time. Apparent motion of sum, day length, numerical examples.

Radiation Flux on a Tilted Surface: Beam, diffuse and reflected radiation, expression for flux on a tilted surface (no derivations) numerical examples.

Solar Thermal Conversion: Collection and storage, thermal collection devices, liquid flat plate collectors, solar air heaters concentrating collectors (cylindrical, parabolic, paraboloid) (Quantitative analysis); sensible heat storage, latent heat storage, application of solar energy water heating. Space heating and cooling, active and nassive systems nower generation, refrigeration, Distillation (Qualitative analysis) solar nond, principle of Module-3

Performance Analysis of Liquid Flat Plate Collectors: General description, collector geometry, selective surface (qualitative discussion) basic energy-balance equation, stagnation temperature, transmissivity of the cover system, transmissivity - absorptivity product, numerical examples. The overall loss coefficient, correlation for the top loss coefficient, bottom and side loss coefficient, problems (all correlations to be provided). Temperature distribution between the collector tubes, collector heat removal factor, collector efficiency factor and collector flow factor, mean plate temperature, instantaneous efficiency (all expressions to be provided). Effect of various parameters on the collector performance; collector orientation, selective surface, fluid inlet temperature, number covers, dust.

Photovoltaic Conversion: Description, principle of working and characteristics, application.

Module-4

Wind Energy : Properties of wind, availability of wind energy in India, wind velocity and power from wind; major problems associated with wind power, wind machines; Types of wind machines and their characteristics, horizontal and vertical axis wind mills, elementary design principles; coefficient of performance of a wind mill rotor, aerodynamic considerations of wind mill design, numerical examples.

Tidal Power: Tides and waves as energy suppliers and their mechanics; fundamental characteristics of tidal power, harnessing tidal energy, limitations.

Ocean Thermal Energy Conversion: Principle of working, Rankine cycle, OTEC power stations in the world, problems associated with OTEC.

Module-5

Geothermal Energy Conversion: Principle of working, types of geothermal station with schematic diagram, geothermal plants in the world, problems associated with geothermal conversion, scope of geothermal energy.

Energy from Bio Mass: Photosynthesis, photosynthetic oxygen production, energy plantation, bio gas production from organic wastes by anaerobic fermentation, description of bio-gas plants, transportation of bio-gas, problems involved with bio-gas production, application of bio-gas, application of bio-gas in engines, advantages.

Hydrogen Energy: Properties of Hydrogen with respected to its utilization as a renewable form of energy, sources of hydrogen, production of hydrogen, electrolysis of water, thermal decomposition of water, thermo chemical production bio-chemical production.

Course Outcomes: At the end of the course, the student will be able to:

- CO1: Describe the environmental aspects of non-conventional energy resources. In Comparison with various conventional energy systems, their prospects and limitations.
- CO2: Know the need of renewable energy resources, historical and latest developments.
- CO3: Describe the use of solar energy and the various components used in the energy production with respect to applications like-heating, cooling, desalination, power generation, drying, cooking etc.
- CO4: Appreciate the need of Wind Energy and the various components used in energy generation and know the classifications.
- CO5: Understand the concept of Biomass energy resources and their classification, types of biogas Plantsapplications
- CO6: Compare Solar, Wind and bio energy systems, their prospects, Advantages and limitations.
- CO7: Acquire the knowledge of fuel cells, wave power, tidal power and geothermal principles and applications.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	ok/s	•	·	
1	Non-Convention Energy Resources	B H Khan	McGraw Hill Education (India) Pvt. Ltd.	3 rd Edition
2	Solar energy	Subhas P Sukhatme	Tata McGraw Hill	2 nd Edition, 1996.
3	Non-Conventional Energy Sources	G.D Rai	Khanna Publishers	2003
Referer	nce Books	•		·
1	Renewable Energy Sources and Conversion Technology	N.K.Bansal, Manfred Kleeman&MechaelMeliss	Tata McGraw Hill.	2004
2	Renewable Energy Technologies	Ramesh R & Kumar K U	Narosa Publishing House New Delhi	
3	Conventional Energy Systems	K M, Non	Wheeler Publishing Co. Ltd., New Delhi	2003

4	Non-Conventional Energy	Ashok V Desai	Wiley Eastern Ltd, New Delhi	2003

Choice Based C	B. E. MECHANICAL ENG redit System (CBCS) and Ou	INEERING tcome Based Education (OBE)					
SEMESTER –VI OPEN ELECTIVE A							
WORLD CLASS MANUFACTURING							
Course Code	18ME652	CIE Marks	40				
Teaching Hours/Week (L:T:P)	3:0:0	SEE Marks	60				
Credits	03	Exam Hours	03				
manufacturing.To familiarize the students	s with the concepts of Busin	acturing, dynamics of material ess excellence and competitive	ness.				
		rent and future business challe bal manufacturing scenario.	inges.				
Historical Perspective World c Schonberger, Halls, Gunn and Mas Module-2	-		uring excellence:				
Benchmark, Bottlenecks and Best performers – Gaining competitive Value Stream mapping – Eliminati Module-3 System and Tools for World Class	e edge through world class ng waste – Toyota Productio Manufacturing. Improving	manufacturing – Value added n System –Example. g Product & Process Design – L	ean Production -				
SQC, FMS, Rapid Prototyping, Popractices, Total Productive mainter Module-4		duct Mix , Optimizing , Procu	rement & stores				
Human Resource Management techniques of removing Root cau Associates–Facilitators– Teamsma Module-5	se of problems–People as	problem solvers–New organiza	tional structures.				
Typical Characteristics of WCM Co is world class Performance –Six Sig	-	ators like POP, TOPP and AMBI	TE systems- what				
Indian Scenario on world class ma manufacturing.		reen Manufacturing, Clean ma	nufacturing, Agile				
Course Outcomes: At the end of t CO1: Understand recent trend		e able to:					
CO2: Demonstrate the relevar	nce and basics of World Class	s Manufacturing.					
CO3: Understand customization	on of product for manufactu	ring.					
CO4: Understand the impleme	entation of new technologies	S.					
CO5: Compare the existing inc	lustries with WCM industrie	S.					
Question paper pattern:							
The question paper will have	e ten full questions carrying	equal marks.					
Each full question will be for							
•		r sub- questions) from each mo	dule				
•		•					
Each full question will have							
 The students will have to an 	swer five full questions, sele	ecting one full question from ea	ch module.				

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	ook/s			
1	World Class Manufacturing-	Sahay B.S.,	Mac Milan Publications	New Delhi
	Strategic Perspective	Saxena KBC. and Ashish Kumar		
2	Just In Time Manufacturing	Korgaonkar M.G	MacMilan Publications	
Refere	nce Books			
1	Production and Operational Management	Adam and Ebert	Prentice Hall learning Pvt. Ltd.	5th Edition
2	The Toyota Way – 14 Management Principles	Jeffrey K.Liker	Mc-Graw Hill	2003
3	Operations Management for Competitive Advantage	Chase Richard B., Jacob Robert	McGraw Hill Publications	11th Edition 2005
4	Making Common Sense Common Practice	Moore Ron	Butterworth-Heinemann	2002
5	World Class Manufacturing- The Lesson of Simplicity	Schonberger R. J	Free Press	1986

Choice Based Cr	SEMESTER –	itcome Based Education (OI /I	BE)				
OPEN ELECTIVE A SUPPLY CHAIN MANAGEMENT							
Course Code 18ME653 CIE Marks 40							
Teaching Hours/Week (L:T:P)	3:0:0	SEE Marks	60				
Credits	03	Exam Hours	03				
Course Learning Objectives:							
C 1	ers of supply chain perform	ance and their inter-relation	ships with strategy.				
• To impart analytical and p	problem-solving skills neces	sary to develop solutions for	or a variety of supply				
chain management & desi	-						
-		coordination in implementi	ng programs such as				
		entories and strategic alliance					
	Jonse, Jonniy manageu mve	antones and strategic amanc					
Module-1 Introduction: Supply Chain – Fun	damontals Evolution Pol	o in Economy Importance	Decision Phases				
Supplier Manufacturer-Customer							
strategy - Supply Chain Performan		S of Supply Chall FellOll	nance. Supply clidit				
Module-2							
Strategic Sourcing Outsourcing –	Make Vs huv - Idontifuing	core processes - Market Va	Hierarchy - Make V				
buy continuum -Sourcing strategy							
base- Supplier Development - Wor							
Module-3							
Supply Chain Network Distribution Distribution Strategies - Models Models. Module-4 Supply Chain Network optimizati	for Facility Location and C	apacity allocation. Distribu	tion Center Location				
decisions using Decision trees. Pl Pricing and Revenue Management	-	item -multiple location inve	entory management				
Module-5							
Current Trends: Supply Chain I Information: Bullwhip Effect - restructuring, Supply Chain Ma differentiation – IT in Supply Chair Business in supply chain.	Effective forecasting - C opping - Supply Chain p n - Agile Supply Chains -Rev	pordinating the supply ch rocess restructuring, Post erse Supply chain. Future of	ain. Supply Chair pone the point o				
Course Outcomes: At the end of the							
CO1: Understand the framewo							
CO2: Build and manage a com	petitive supply chain using	strategies, models, techniqu	es and information				
technology.							
CO3: Plan the demand, invent	ory and supply and optimiz	e supply chain network.					
CO4: Understand the emergin	g trends and impact of IT o	n Supply chain.					
Question paper pattern:	· ·						
The question paper will have	e ten full questions carrving	gegual marks.					
Each full question will be for		· •					
There will be two full question		ir sub- questions) from oach	modulo				

- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Text	book/s			
1	Supply Chain Management– Text and Cases	Janat Shah	Pearson Education	2009
2	Supply Chain Management- Strategy Planning and Operation	Sunil Chopra and Peter Meindl	PHI Learning / Pearson Education	2007
Refer	rence Books	•	•	•
1	Business Logistics and Supply Chain Management	Ballou Ronald H	Pearson Education	5th Edition, 2007
2	Designing and Managing the Supply Chain: Concepts, Strategies, and Cases	David Simchi-Levi, Philip Kaminsky, Edith Simchi-Levi	Tata McGraw-Hill	2005
3	Supply Chain Management- Concept and Cases	Altekar Rahul V	РНІ	2005
4	Modeling the Supply Chain	Shapiro Jeremy F	Thomson Learning	Second Reprint , 2002
5	Principles of Supply Chain Management- A Balanced Approach	Joel D. Wisner, G. Keong Leong, Keah- Choon Tan	South-Western, Cengage Learning	2008

Choice Based Cro	B. E. MECHANICAL ENG edit System (CBCS) and Out SEMESTER –VI	tcome Based Education (OBE)				
ADVANCED MATERIALS TECHNOLOGY						
Course Code	18ME654	CIE Marks	40			
Teaching Hours/Week (L:T:P)	3:0:0	SEE Marks	60			
Credits	03	Exam Hours	03			
Course Learning Objectives:						
 To impart knowledge on ma 	aterial selection methods ar	nd basics of advanced engineer	ing materials.			
• To introduce the basics of s	mart materials, composite	materials, ceramics and glasses	and modern			
metallic materials and their	applications in engineering	5.				
Module-1						
Classification and Selection of N	laterials: Classification of	materials, properties require	d in Engineerin			
materials, Selection of Materials; N			-			
mechanical properties, strength, to		-				
wear resistance – Relationship b			•			
selection with relevance to aero, au						
Module-2	ato, marine, matimery dilu					
Composite Materials:Fiber reinford	-					
copper and Titanium alloys and			nd epoxy resin			
Development, Important properties	s and applications of these r	materials.				
Module-3						
Ceramics and Glasses - Bio-ceram	ics: Nearly inert ceramics,	bio-reactive glasses and glass	ceramics, porou			
ceramics; Calcium phosphate cera	mics: grafts, coatings Phys	sico-chemical surface modifica	ation of materia			
used in medicine.						
Low & High Temperature Materials	: Properties required for lo	w temperature applications, N	Aaterials availabl			
for low temperature applications,						
available for high temperature appl	-					
Module-4						
Modern Metallic Materials: Dual S	iteels, Micro alloyed, High S	Strength Low alloy (HSLA) Stee	l, Transformatio			
induced plasticity (TRIP) Steel, Mara			,			
	aging Steel, Inter metallics, I					
Non-metallic Materials. Forymetric			iniques for Fibers			
-	materials and their molecul	ar structures, Production Tech	•			
Foams, Adhesives and Coatings, str Module-5	materials and their molecul	ar structures, Production Tech	•			
Foams, Adhesives and Coatings, str Module-5	materials and their molecul ucture, Properties and Appl	ar structures, Production Tech ications of Engineering Polyme	ers.			
Foams, Adhesives and Coatings, str Module-5 Smart Materials: Shape Memory A	materials and their molecul ucture, Properties and Appl loys, Varistors and Intellige	ar structures, Production Tech ications of Engineering Polyme nt materials for bio-medical ap	plications.			
Foams, Adhesives and Coatings, str Module-5 Smart Materials: Shape Memory Al Nanomaterials: Definition, Types o	materials and their molecul ucture, Properties and Appl loys, Varistors and Intellige f nanomaterials including c	ar structures, Production Tech ications of Engineering Polyme nt materials for bio-medical ap	plications.			
Foams, Adhesives and Coatings, str Module-5 Smart Materials: Shape Memory Al Nanomaterials: Definition, Types o and mechanical properties, Applica	materials and their molecul ucture, Properties and Appl loys, Varistors and Intellige f nanomaterials including c tions of nanomaterials.	ar structures, Production Tech ications of Engineering Polyme nt materials for bio-medical ap arbon nanotubes and nanocor	plications.			
Foams, Adhesives and Coatings, str Module-5 Smart Materials: Shape Memory Al Nanomaterials: Definition, Types o and mechanical properties, Applica Course Outcomes: At the end of th	materials and their molecul ucture, Properties and Appl loys, Varistors and Intellige f nanomaterials including c tions of nanomaterials. e course, the student will be	ar structures, Production Tech ications of Engineering Polyme nt materials for bio-medical ap arbon nanotubes and nanocor e able to:	plications. nposites, Physica			
Foams, Adhesives and Coatings, str Module-5 Smart Materials: Shape Memory Al Nanomaterials: Definition, Types o and mechanical properties, Applica Course Outcomes: At the end of th CO1: Explain the concepts and	materials and their molecul ucture, Properties and Appl loys, Varistors and Intellige f nanomaterials including c tions of nanomaterials. e course, the student will be principles of advanced mate	ar structures, Production Tech ications of Engineering Polyme nt materials for bio-medical ap arbon nanotubes and nanocor e able to: erials and manufacturing proce	plications. nposites, Physica			
Foams, Adhesives and Coatings, str Module-5 Smart Materials: Shape Memory Al Nanomaterials: Definition, Types o and mechanical properties, Applica Course Outcomes: At the end of th CO1: Explain the concepts and CO2: Understand the application	materials and their molecul ucture, Properties and Appl loys, Varistors and Intellige f nanomaterials including c tions of nanomaterials. e course, the student will be principles of advanced materials ons of all kinds of Industrial	ar structures, Production Tech ications of Engineering Polyme nt materials for bio-medical ap arbon nanotubes and nanocor e able to: erials and manufacturing proce materials.	plications. nposites, Physica			
Foams, Adhesives and Coatings, str Module-5 Smart Materials: Shape Memory Al Nanomaterials: Definition, Types o and mechanical properties, Applica Course Outcomes: At the end of th CO1: Explain the concepts and CO2: Understand the application CO3: Apply the material selection	materials and their molecul ucture, Properties and Appl loys, Varistors and Intellige f nanomaterials including c tions of nanomaterials. e course, the student will be principles of advanced mate ons of all kinds of Industrial on concepts to select a mat	ar structures, Production Tech ications of Engineering Polyme nt materials for bio-medical ap arbon nanotubes and nanocor e able to: erials and manufacturing proce materials. erial for a given application.	plications. nposites, Physica			
Foams, Adhesives and Coatings, str Module-5 Smart Materials: Shape Memory Al Nanomaterials: Definition, Types o and mechanical properties, Applica Course Outcomes: At the end of th CO1: Explain the concepts and CO2: Understand the application CO3: Apply the material selection CO4: Define Nanotechnology, D	materials and their molecul ucture, Properties and Appl loys, Varistors and Intellige f nanomaterials including c tions of nanomaterials. e course, the student will be principles of advanced mate ons of all kinds of Industrial on concepts to select a mat Describe nano material char	ar structures, Production Tech ications of Engineering Polyme nt materials for bio-medical ap arbon nanotubes and nanocor e able to: erials and manufacturing proce materials. erial for a given application. acterization.	plications. nposites, Physica sses.			
Foams, Adhesives and Coatings, str Module-5 Smart Materials: Shape Memory Al Nanomaterials: Definition, Types o and mechanical properties, Applica Course Outcomes: At the end of th CO1: Explain the concepts and CO2: Understand the application CO3: Apply the material selection	materials and their molecul ucture, Properties and Appl loys, Varistors and Intellige f nanomaterials including c tions of nanomaterials. e course, the student will be principles of advanced mate ons of all kinds of Industrial on concepts to select a mat Describe nano material char	ar structures, Production Tech ications of Engineering Polyme nt materials for bio-medical ap arbon nanotubes and nanocor e able to: erials and manufacturing proce materials. erial for a given application. acterization.	plications. nposites, Physica sses.			

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Refere	nce Books			
1	Engineering Material Technology	James A. Jacobs & Thomas F. Kilduff	Prentice Hall	
2	Materials Science and Engineering	WD. Callister Jr.	Wiley India Pvt. Ltd	2010
3	Engineering Design: A Materials and Processing Approach	G.E. Dieter	McGraw Hill	1991
4	Materials Selection in Mechanical Design	M.F. Ashby	Pergamon Press	1992
5	Introduction to Engineering Materials & Manufacturing Processes	NIIT	Prentice Hall of India	
6	Engineering Materials Properties and Selection	Kenneth G. Budinski	Prentice Hall of India	
7	Selection of Engineering Materials	Gladius Lewis	Prentice-Hall, New Jersey	

	Choice Based Cre		NEERING come Based Education (OBE)		
		SEMESTER - VI			
Cour	se Code	PUTER AIDED MODELLING A	CIE Marks	40	
	hing Hours /Week (L:T:P)	0:2:2	SEE Marks	60	
Credi		0.2.2	Exam Hours	03	
	se Learning Objectives:	02			
		nding of Modeling and Analy	vsis software		
	•		ng on bars, trusses and beams,	and analyze the	
		us parameters like stresses a	-		
		-	mic analysis to know the natura	l frequencies o	
	different kind of beams.	principles to early out dyna		in requeiteres o	
SI.		Experimen	tc		
No.		Lyperinen	113		
		PART A			
1	Study of a FEA package and	modeling and stress analys	is of:		
	a. Bars of constant cros	ss section area, tapered cros	s section area and stepped bar		
	b. Trusses – (Minimum 2 exercises of different types)				
	c. Beams – Simply sup	ported, cantilever, beams v	vith point load , UDL, beams w	ith varying load	
	etc. (Minimum 6 exe	ercises)			
	d. Stress analysis of a re	ectangular plate with a circu	lar hole.		
	I	PART B			
2	-	•	nd convection boundary conditi	ions (Minimun	
-	4 exercises of different type	s)			
3	Dynamic Analysis to find:				
		of beam with fixed – fixed er			
			tions subjected to forcing function	on	
	c) Response of Bar sur	ojected to forcing functions			
		PART C(only for de	-		
4	a. Demonstrate the use to solver.	e of graphics standards (IGE	S, STEP etc) to import the mode	el from modele	
	 b. Demonstrate one e analysis. 	xample of contact analysis	to learn the procedure to ca	rry out contac	
	 c. Demonstrate at leas from composite mat 		mple to model and analyze bars	or plates made	
	se Outcomes: At the end of th				
CO1:	Use the modern tools to form	ulate the problem, create g	eometry, descritize, apply bound	dary conditions	
to					
	solve problems of bars, truss,	beams, and plate to find str	resses with different-loading cor	nditions.	
CO2:	Demonstrate the ability to ob	tain deflection of beams sul	ojected to point, uniformly distri	ibuted and	
	varying loads and use the ava	ilable results to draw shear	force and bending moment diag	grams.	
CO3:	Analyze and solve 1D and 2D	heat transfer conduction an	d convection problems with diff	erent boundary	
	conditions.				
CO4	: Carry out dynamic analysis ar	nd finding natural frequenci	es of beams, plates, and bars for	r various	
	boundary conditions and also				

Conduct of Practical Examination:

- 1. All laboratory experiments are to be included for practical examination.
- 2. Breakup of marks and the instructions printed on the cover page of answer script to be strictly adhered by the examiners.
- 3. Students can pick one experiment from the questions lot prepared by the examiners.
 - Scheme of Examination:

One Question from Part A - 40 Marks One Question from Part B - 40 Marks

Viva-Voce - 20 Marks

		B. E. MECHANICAL ENGIN				
Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - VI HEAT TRANSFER LAB						
						Cours
Teac	Teaching Hours/Week (L:T:P) 0:2:2 SEE Marks 60					
Cred	its	02	Exam Hours	03		
Cour	se Learning Objectives:					
•	The primary objective of this c	ourse is to provide the fun	damental knowledge necess	ary to		
	understand the behavior of th	ermal systems.				
•	This course provides a detailed	d experimental analysis, inc	cluding the application and h	eat transfer		
	through solids, fluids, and vacu	Jum.				
•		adiation heat transfer in or	ne and two dimensional stea	dy and unsteady		
<u></u>	svstems are examined.	F				
SI. No.		Experiments				
NO.		PART A				
1	Determination of Thermal Cond					
2		-	mnosite wall			
3	Determination of Overall Heat Transfer Coefficient of a Composite wall. Determination of Effectiveness on a Metallic fin.					
4	Determination of Heat Transfer Coefficient in free Convection					
5	Determination of Heat Transfer Coefficient in a Forced Convention					
6	Determination of Emissivity of a Surface.					
0	Determination of Emissivity of a	PART B				
7	Determination of Stefan Boltzma					
8	Determination of LMDT and Effe	ectiveness in a Parallel Flow	v and Counter Flow Heat Exc	hangers.		
9	Experiments on Boiling of Liquid			0		
10	Performance Test on a Vapour C					
11	Performance Test on a Vapour C	Compression Air – Conditio	ner.			
12	Experiment on Transient Condu	ction Heat Transfer.				
		PART C (OPTIONAL)				
13	Analysis of steady and transient using Numerical approach (ANS)	· ·	ture distribution of plane wa	ll and cylinder		
14	Determination of temperature of through convection using Nume			ed to heat loss		
Cour	se Outcomes: At the end of the co					
CO1:	Determine the thermal conductiv	vity of a metal rod and over	rall heat transfer coefficient	of composite		
	slabs.					
CO2:	Determine convective heat trans theoretical values.	fer coefficient for free and	forced convection and corre	late with		
	Evaluate temperature distributio	n characteristics of steady	and transient heat conduction	on through solid		
	cylinder experimentally.					
	Determine surface emissivity of a					
CO5:	Estimate performance of a refrig	erator and effectiveness of	a fin and Double pipe heat o	exchanger		

Conduct of Practical Examination:

1. All laboratory experiments are to be included for practical examination.

2. Breakup of marks and the instructions printed on the cover page of answer script to be strictly adhered by the examiners.

3. Students can pick one experiment from the questions lot prepared by the examiners.

4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made

Scheme of Examination:

One Question from Part A - 40 Marks

One Question from Part B - 40 Marks

Viva-Voce - 20 Marks

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER – VII

CONTROL ENGINEERING			
Course Code	18ME71	CIE Marks	40
Teaching Hours / Week (L:T:P)	3:0:0	SEE Marks	60
Credits	03	Exam Hours	03

Course Learning Objectives:

- To develop comprehensive knowledge and understanding of modern control theory, industrial automation, and systems analysis.
- To model mechanical, hydraulic, pneumatic and electrical systems.
- To represent system elements by blocks and its reduction techniques.
- To understand transient and steady state response analysis of a system.
- To carry out frequency response analysis using polar plot, Bode plot.
- To analyse a system using root locus plots.
- To study different system compensators and characteristics of linear systems.

Module-1

Introduction: Components of a control system, Open loop and closed loop systems.

Types of controllers: Proportional, Integral, Differential, Proportional-Integral, and Proportional- Integral-Differential controllers.

Modelling of Physical Systems: Mathematical Models of Mechanical, Electrical, Thermal, Hydraulic Systems. Module-2

Time domain performance of control systems: Typical test signal, Unit step response and time domain specifications of first order, second order system. Steady state error, error constants.

Module-3

Block diagram algebra, Reduction of block diagram, Signal flow graphs, Gain formula for signal flow graphs, State diagram from differential equations.

Module-4

Stability of linear control systems: Routh's criterion, Root locus, Determination of phase margin and gain margin using root locus.

Module-5

Stability analysis using Polar plot, Nyquist plot, Bode plot, Determination of phase margin and gain margin using Bode plot.

Assignment:

1.Study of On-Off Controller for Flow/ Temperature.

- 2. Study of Control Modes like P, PD, PI, PID for Pressure / Temperature / Flow.
- 3. Assignment on Root Locus, Bode Plots and Polar Plots.

4. Use of Software 'MATLAB' on the above topics.

Course Outcomes: At the end of the course, the student will be able to:

CO1: Identify the type of control and control actions.

- CO2: Develop the mathematical model of the physical systems.
- CO3: Estimate the response and error in response of first and second order systems subjected standard input signals.
- CO4: Represent the complex physical system using block diagram and signal flow graph and obtain transfer function.
- CO5: Analyse a linear feedback control system for stability using Hurwitz criterion, Routh's criterion and root Locus technique in complex domain.

CO6: Analyse the stability of linear feedback control systems in frequency domain using polar plots, Nyquist and Bode plots.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	ok/s			
1	Automatic Control Systems	Farid G., Kuo B. C	McGraw Hill Education	10th Edition,2018
2	Control systems	Manik D. N	Cengage	2017
Refere	nce Books			
1	Modern control Engineering	K. Ogeta	Pearson	5th Edition, 2010
2	Control Systems Engineering	Norman S Nice		Fourth Edition, 2007
3	Modern control Systems	Richard C Dorf	Pearson	2017
4	Control Systems Engineering	ljNagrath, M Gopal	New Age International (P) Ltd	2018
5	Control Systems Engineering	S Palani	Tata McGraw Hill Publishing Co Ltd	ISBN-13 9780070671

	SEMESTER - VII		
CON	IPUTER AIDED DESIGN AND N	MANUFACTURING	
Course Code	18ME72	CIE Marks	40
Teaching Hours /Week (L:T:P)	3:0:0	SEE Marks	60
Credits	03	Exam Hours	03
 mathematical models. To make students to under CAM) leading to Compute entities on display device 	erstand the Computer Applica er integrated systems. Enable es.	erent concepts of automation b ations in Design and Manufactu them to perform various trans lines, Line Balancing Techniqu	uring [CAD / sformations of
 Manufacturing Systems. To expose students to co planning etc. To expose the students to To introduce the student. 	mputer aided process plannin o CNC Machine Tools, CNC pa is to concepts of Additive Man	ng, material requirement plann rt programming, and industria nufacturing, Internet of Things,	ning, capacity I robots.
4.0 leading to Smart Fact	ory.		
systems- types of automation, re		duction Systems, automated outer Integrated Manufacturin	
elements of a CIM system, CA production capacity, utilization problems. Automated Production Lines and	easons for automating, Comp D/CAM and CIM. Mathema and availability, manufactu d Assembly Systems: Fundam	uter Integrated Manufacturin tical models and matrices: pring lead time, work-in- pro entals, system configurations,	g, computerize production rate pcess, numerice applications,
elements of a CIM system, CA production capacity, utilization problems. Automated Production Lines and automated flow lines, buffer stor lines without storage, partial auto	easons for automating, Comp D/CAM and CIM. Mathema and availability, manufactu d Assembly Systems: Fundam rage, control of production line omation, analysis of automate	outer Integrated Manufacturin tical models and matrices: p ring lead time, work-in- pro entals, system configurations, e, analysis of transfer lines, and	g, computerize production rate pcess, numerice applications, alysis of flow
elements of a CIM system, CA production capacity, utilization problems. Automated Production Lines and automated flow lines, buffer stor lines without storage, partial auto fundamentals of automated asse	easons for automating, Comp D/CAM and CIM. Mathema and availability, manufactu d Assembly Systems: Fundam rage, control of production line omation, analysis of automate	outer Integrated Manufacturin tical models and matrices: p ring lead time, work-in- pro entals, system configurations, e, analysis of transfer lines, and	g, computerize production rate pcess, numeric applications, alysis of flow
systems- types of automation, re- elements of a CIM system, CA production capacity, utilization problems. Automated Production Lines and automated flow lines, buffer stor- lines without storage, partial auto- fundamentals of automated assee Module-2 CAD and Computer Graphics So configuration, functions of graphi Transformations: 2D transformat concatenation, numerical problem Generative Systems, benefits of System, computer integrated pr MRP system, working of MRP, of	easons for automating, Comp D/CAM and CIM. Mathema and availability, manufactu d Assembly Systems: Fundam rage, control of production line omation, analysis of automate mbly systems, numericals. ftware: The design process, ics package, constructing the cions, translation, rotation and ms on transformations. Ining and Control System: Co CAPP, Production Planning a roduction management syste	outer Integrated Manufacturin tical models and matrices: p ring lead time, work-in- pro- entals, system configurations, e, analysis of transfer lines, and ed flow lines with storage buffer applications of computers in o geometry. I scaling, homogeneous transfer omputer Aided Process Plannin and Control Systems, typical a m, Material Requirement Pla	g, computerize production rate production rate process, numerica applications, alysis of flow er, design, softwar ormation matrix ng, Retrieval an activities of PP nning, inputs t
elements of a CIM system, CA production capacity, utilization problems. Automated Production Lines and automated flow lines, buffer stor lines without storage, partial auto fundamentals of automated asse Module-2 CAD and Computer Graphics So configuration, functions of graphi Transformations: 2D transformat concatenation, numerical problem Generative Systems, benefits of System, computer integrated pr MRP system, working of MRP, of Shon floor control Module-3	easons for automating, Comp D/CAM and CIM. Mathema and availability, manufactu d Assembly Systems: Fundam rage, control of production line omation, analysis of automate mbly systems, numericals. ftware: The design process, a ics package, constructing the cions, translation, rotation and ms on transformations. Inning and Control System: Co CAPP, Production Planning a roduction management syste putputs and benefits, Capacit	outer Integrated Manufacturin tical models and matrices: p ring lead time, work-in- pro- entals, system configurations, e, analysis of transfer lines, and ed flow lines with storage buffer applications of computers in o geometry. I scaling, homogeneous transfer omputer Aided Process Plannir and Control Systems, typical m, Material Requirement Pla ty Planning, Computer Aided	g, computerize production rate production rate production rate applications, alysis of flow er, design, softwar ormation matrix ng, Retrieval an activities of PP nning, inputs t Quality Contro
elements of a CIM system, CA production capacity, utilization problems. Automated Production Lines and automated flow lines, buffer stor- lines without storage, partial auto fundamentals of automated asse Module-2 CAD and Computer Graphics So- configuration, functions of graphi Transformations: 2D transformat concatenation, numerical probler Computerized Manufacture Plan Generative Systems, benefits of System, computer integrated pr MRP system, working of MRP, or Shon floor control Module-3 Flexible Manufacturing Systems	easons for automating, Comp D/CAM and CIM. Mathema and availability, manufactu d Assembly Systems: Fundam rage, control of production line omation, analysis of automate mbly systems, numericals. ftware: The design process, a ics package, constructing the cions, translation, rotation and ms on transformations. Ining and Control System: Co CAPP, Production Planning a roduction management syste putputs and benefits, Capacit : Fundamentals of Group Tec	outer Integrated Manufacturin tical models and matrices: p ring lead time, work-in- pro- entals, system configurations, e, analysis of transfer lines, and ed flow lines with storage buffer applications of computers in o geometry. I scaling, homogeneous transfer omputer Aided Process Plannir and Control Systems, typical a m, Material Requirement Pla ty Planning, Computer Aided	g, computerize production rate ocess, numerica applications, alysis of flow er, design, softwar ormation matrix ng, Retrieval an activities of PP nning, inputs t Quality Contro cturing System
elements of a CIM system, CA production capacity, utilization problems. Automated Production Lines and automated flow lines, buffer stor lines without storage, partial auto fundamentals of automated asse Module-2 CAD and Computer Graphics So configuration, functions of graphi Transformations: 2D transformat concatenation, numerical problem Generative Systems, benefits of System, computer integrated pr MRP system, working of MRP, of Shon floor control Module-3 Flexible Manufacturing Systems: types of FMS, FMS components	easons for automating, Comp D/CAM and CIM. Mathema and availability, manufactu d Assembly Systems: Fundam rage, control of production line omation, analysis of automate mbly systems, numericals. ftware: The design process, a ics package, constructing the cions, translation, rotation and ms on transformations. Ining and Control System: Co CAPP, Production Planning a roduction management syste outputs and benefits, Capacit : Fundamentals of Group Teo s, Material handling and stor	outer Integrated Manufacturin tical models and matrices: p ring lead time, work-in- pro- entals, system configurations, e, analysis of transfer lines, and ed flow lines with storage buffer applications of computers in o geometry. I scaling, homogeneous transfer omputer Aided Process Plannir and Control Systems, typical m, Material Requirement Pla ty Planning, Computer Aided chnology and Flexible Manufa rage system, applications, ber	g, computerize production rate production rate production rate productions, applications, alysis of flow er, design, softwar ormation matrix ng, Retrieval an activities of PP nning, inputs t Quality Contro cturing System nefits, compute
elements of a CIM system, CA production capacity, utilization problems. Automated Production Lines and automated flow lines, buffer stor lines without storage, partial auto fundamentals of automated asse Module-2 CAD and Computer Graphics So configuration, functions of graphi Transformations: 2D transformat concatenation, numerical problem Generative Systems, benefits of System, computer integrated pr MRP system, working of MRP, of Shon floor control Module-3 Flexible Manufacturing Systems: types of FMS, FMS components	easons for automating, Comp D/CAM and CIM. Mathema and availability, manufactu d Assembly Systems: Fundam rage, control of production line omation, analysis of automate mbly systems, numericals. ftware: The design process, a ics package, constructing the cions, translation, rotation and ms on transformations. Ining and Control System: Co CAPP, Production Planning a roduction management syste outputs and benefits, Capacit : Fundamentals of Group Teo s, Material handling and stor	outer Integrated Manufacturin tical models and matrices: p ring lead time, work-in- pro- entals, system configurations, e, analysis of transfer lines, and ed flow lines with storage buffer applications of computers in o geometry. I scaling, homogeneous transfer omputer Aided Process Plannir and Control Systems, typical m, Material Requirement Pla ty Planning, Computer Aided chnology and Flexible Manufa rage system, applications, ber	g, computerize production rate production rate production rate productions, applications, alysis of flow er, design, softwar ormation matrix ng, Retrieval an activities of PP nning, inputs t Quality Contro cturing System nefits, compute
elements of a CIM system, CA production capacity, utilization problems. Automated Production Lines and automated flow lines, buffer stor- lines without storage, partial auto fundamentals of automated asse Module-2 CAD and Computer Graphics So- configuration, functions of graphi Transformations: 2D transformat concatenation, numerical probler Computerized Manufacture Plan Generative Systems, benefits of System, computer integrated pr	easons for automating, Comp D/CAM and CIM. Mathema and availability, manufactu d Assembly Systems: Fundam rage, control of production line omation, analysis of automate mbly systems, numericals. ftware: The design process, a ics package, constructing the cions, translation, rotation and ms on transformations. Ining and Control System: Co CAPP, Production Planning a roduction management syste putputs and benefits, Capacit : Fundamentals of Group Teo 5, Material handling and stor and design issues, Automate	outer Integrated Manufacturin tical models and matrices: p ring lead time, work-in- pro- entals, system configurations, e, analysis of transfer lines, and ed flow lines with storage buffer applications of computers in o geometry. I scaling, homogeneous transfer omputer Aided Process Plannir and Control Systems, typical m, Material Requirement Pla ty Planning, Computer Aided chnology and Flexible Manufa rage system, applications, ber	g, computerize production rations ocess, numeric applications, alysis of flow er, design, softwar ormation matri ng, Retrieval an activities of PP nning, inputs t Quality Contro cturing System nefits, compute
elements of a CIM system, CA production capacity, utilization problems. Automated Production Lines and automated flow lines, buffer stor- lines without storage, partial auto fundamentals of automated asse Module-2 CAD and Computer Graphics So configuration, functions of graphic Transformations: 2D transformat concatenation, numerical probler Computerized Manufacture Plan Generative Systems, benefits of System, computer integrated pr MRP system, working of MRP, or Shon floor control Module-3 Flexible Manufacturing Systems: types of FMS, FMS components control systems, FMS planning a	easons for automating, Comp D/CAM and CIM. Mathema and availability, manufactu d Assembly Systems: Fundam rage, control of production line omation, analysis of automate mbly systems, numericals. ftware: The design process, a ics package, constructing the cions, translation, rotation and ms on transformations. Inning and Control System: Co CAPP, Production Planning a roduction management syste putputs and benefits, Capacit : Fundamentals of Group Teo 5, Material handling and stor and design issues, Automate stems and data capture.	outer Integrated Manufacturin tical models and matrices: p ring lead time, work-in- pro- entals, system configurations, e, analysis of transfer lines, and ed flow lines with storage buffer applications of computers in o geometry. I scaling, homogeneous transfer omputer Aided Process Plannir and Control Systems, typical m, Material Requirement Pla ty Planning, Computer Aided chnology and Flexible Manufa rage system, applications, ber ed Storage and Retrieval Syst	g, computerize production rat production rat applications, alysis of flow er, design, softwa ormation matri ng, Retrieval ar activities of PF nning, inputs Quality Contro cturing System nefits, comput ems, AS/RS ar

balancing, computerized line balancing methods.

Module-4

Computer Numerical Control: Introduction, components of CNC, CNC programming, manual part programming, G Codes, M Codes, programming of simple components in turning, drilling and milling systems, programming with canned cycles. Cutter radius compensations.

Robot Technology: Robot anatomy, joints and links, common robot configurations, robot control systems, accuracy and repeatability, end effectors, sensors in robotics. Robot programming methods: on-line and off-line methods. Robot industrial applications: material handling, processing and assembly and inspection.

Module-5

Additive Manufacturing Systems: Basic principles of additive manufacturing, slicing CAD models for AM, advantages and limitations of AM technologies, Additive manufacturing processes: Photo polymerization, material jetting, binder jetting, material extrusion, Powder bed sintering techniques, sheet lamination, direct energy deposition techniques, applications of AM.

Future of Automated Factory: Industry 4.0, functions, applications and benefits. Components of Industry 4.0, Internet of Things (IOT), IOT applications in manufacturing, Big-Data and Cloud Computing for IOT, IOT for smart manufacturing, influence of IOT on predictive maintenance, industrial automation, supply chain optimization, supply-chain & logistics, cyber-physical manufacturing systems.

Course Outcomes: At the end of the course, the student will be able to:

CO1: Define Automation, CIM, CAD, CAM and explain the differences between these concepts. Solve simple problems of transformations of entities on computer screen

CO2: Explain the basics of automated manufacturing industries through mathematical models and analyze different types of automated flow lines.

CO3: Analyse the automated flow linestoreduce time and enhance productivity.

CO4: Explain the use of different computer applications in manufacturing, and able to prepare part programs

forsimple jobs on CNC machine tools and robot programming.

CO5: Visualize and appreciate the modern trends in Manufacturing like additive manufacturing, Industry 4.0 and applications of Internet of Things leading to Smart Manufacturing.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	ok/s			
1	Automation, Production Systems and Computer-Integrated Manufacturing	Mikell P Groover	Pearson Learning.	4 th Edition,2015
2	CAD / CAM Principles and Applications	P N Rao	Tata McGraw-Hill	3 rd Edition, 2015
3	CAD/CAM/CIM	Dr. P. Radhakrishnan	New Age International Publishers, New Delhi.	3 rd edition
Referer	nce Books			
1	"CAD/CAM"	Ibrahim Zeid	Tata McGraw Hill.	
2	Principles of Computer Integrated Manufacturing	S.Kant Vajpayee	, Prentice Hall of India, New Delhi.	1999

	Work Systems And The Methods,	Groover M.		Upper Saddle
3	Measurement And Management of Work	P.,Pearson	Prentice Hall	River, NJ, 2007.
4	Computer Automation in Manufacturing	Boucher, T. O., Chapman & Hall	London, UK,	1996.
5	Introduction to Robotics: Mechanics And Control	Craig, J. J.	Addison-Wesley Publishing Company	2 nd Ed 1989.
6	Internet of Things (IoT): Digitize or Die: Transform your organization. Embrace the digital evolution. Rise above the competition	Nicolas Windpassinger	Amazon.	
7	Internet of Things: A Hands-on Approach"	ArshdeepBahga and Vijay Madisetti	Universities Press	
8	Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing,	Ian Gibson, David W. Rosen, Brent Stucker		2nd Ed. (2015)
9	Understanding Additive Manufacturing	Andreas Gebhardt, Hanser Publishers		2011
10	Understanding Additive Manufacturing",	Andreas Gebhardt,	Hanser Publishers,	2011

Choice Based Cr	B. E. MECHANICAL ENGI edit System (CBCS) and Out	INEERING come Based Education (OBE)	
	SEMESTER – VI		
	Professional Electiv	ve 2	
	DESIGN FOR MANUFA	ACTURE	
Course Code	18ME731	CIE Marks	40
Teaching Hours / Week (L:T:P)	3:0:0	SEE Marks	60
Credits	03	Exam Hours	03
Course Learning Objectives:			
	tors to be considered in des	igning parts and components v	with focus on
manufacturability.			
 To expose the students to a 	limensional tolerances, geor	metric tolerances and true pos	ition tolerance
techniques in manufacture.			
 To impart the knowledge o 	n design considerations for o	designing components produce	ed using various
machining operations like t	urning, drilling, milling, grind	ding etc.	
• To educate the students on	design rules and recommer	ndations for processes like cast	ting, welding,
forgings powder metallurgy	and injection moulding.		
Module-1			
Introduction: Definition, need for	DFM, DFM approach for cos	st reduction, general design gu	uide lines of DFM
advantages and disadvantages, ap	plication of DFM in industri	es, Design for Quality Manufa	cturability, DFQN
approach, designing for economica	production. Design for Exce	ellence (DFX).	
Engineering Tolerancing: Basics of			cation, Review o
relationship between attainable tol	-	•	
Process capability, mean, variance			
effect of tolerance- Sure fit law and			μ
Module-2	,,		
True positional theory: Compariso	on between coordinate and	true position method of feat	ure location. True
position tolerance- virtual size con		•	
projected tolerance zone and funct			
true position tolerancing.	Sonal Babes. Concept of Ze	To the position tolerance. Sh	
Selective Assembly: Interchangeab	le nart manufacture and cel	active assembly. Deciding the	number of group
-model-1: group tolerance of matin			
of axial play- introducing secondary			
Module-3	machining operations, and	ianinateu sinnis, examples.	
	datum fan man fan de st		
Datum Features: Functional datum	-	changing the datum; examples	
ampanant Design Design factor	ac to facilitate machinin	a drille milling outtors he	survey Dessel

Component Design:Design features to facilitate machining: drills, milling cutters, keyways, Doweling procedures, counter sunk screws, Reduction of machined area, simplification by separation, simplification by amalgamation, Design for machinability, Design for economy, Design for clampability, Design for accessibility. Designing for heat treatment, roller burnishing, and economical de-burring.

Module-4

Design of components with casting considerations: Pattern, mould, and parting line. Cored holes and machined holes. Identifying the possible and probable parting lines. Castings requiring special sand cores. Designing to obviate sand cores.

Welding considerations: Advantages of weldments over other design concepts, design requirements and rules, redesign of components for welding; case studies.

Design for Economical

Processes and Materials of

Production

Manufacture

4

5

Modu	le-5			
Forgin	g considerations -requirements a	nd rules-redesign of	components for forging and case	studies.
Desigr	n of components for powder met	allurgy- requiremen	ts and rules-case studies.	
Desigr	n of components for injection mo	ulding- requirement	s and rules-case studies.	
Course	e Outcomes: At the end of the cou	urse, the student wil	l be able to:	
CO1: S	Select proper materials and manuf	facturing processes f	or designing products/componen	nts by applying th
re	elevant principles for ease and ec	onomic production.		
CO2: I	dentify faulty design factors leadi	ng to increased costs	in producing mechanical compo	nents.
CO3: A	Apply appropriate design tolerance	es – dimensional, ge	ometric and true position toleran	ces for the
р	roduction processes of mechanic	al components.		
CO4: A	Apply the concepts related to redu	icing machined area	s, simplification by amalgamation	and separation,
С	lampability, accessibility etc., in th	ne design of mechan	ical components.	
CO5: A	Analyse the design of castings, we	ldments, forgings, po	owder metallurgy components an	d suggest desigr
n	nodifications to reduce the cost.			
Quest	ion paper pattern:			
•	The question paper will have ten f	full questions carryir	ng equal marks.	
•	Each full question will be for 20 m	arks.		
•	There will be two full questions (v	vith a maximum of fo	our sub- questions) from each mo	odule.
•	Each full question will have sub- q	unstion covoring all		
	Lacin run question win nave sub- q	uestion covering an	the topics under a module.	
•	The students will have to answer	_	•	ch module
		_	•	ch module Edition and Year
SI No	The students will have to answer Title of the Book	five full questions, se Name of the	electing one full question from ea	Edition and
Sl No Textbo 1	The students will have to answer to	five full questions, se Name of the Author/s Peck H	Name of the Publisher Pitman Publications	Edition and Year 1983
Sl No Textbo	The students will have to answer to	five full questions, se Name of the Author/s	Name of the Publisher	Edition and Year
Sl No Textbo 1	The students will have to answer to	five full questions, se Name of the Author/s Peck H	Name of the Publisher Pitman Publications	Edition and Year 1983
Sl No Textbo 1 2	The students will have to answer to	five full questions, se Name of the Author/s Peck H Dieter, G.E.	Pitman Publications McGraw Hill Co.Ltd	Edition and Year 1983 2000
Sl No Textbo 1	The students will have to answer to	five full questions, se Name of the Author/s Peck H	Name of the Publisher Pitman Publications	Edition and Year 1983
SI No Textbo 1 2	The students will have to answer to	five full questions, se Name of the Author/s Peck H Dieter, G.E.	Pitman Publications McGraw Hill Co.Ltd	Edition and Year 1983 2000
SI No Textbo 1 2 3	The students will have to answer to	five full questions, se Name of the Author/s Peck H Dieter, G.E.	Pitman Publications McGraw Hill Co.Ltd	Edition and Year 1983 2000
SI No Textbo 1 2 3	The students will have to answer Title of the Book Designing for Manufacture Engineering Design: A Materials and processing Approach Handbook of Products Design for Manufacturing: A Practical Guide to Low-cost Production	five full questions, se Name of the Author/s Peck H Dieter, G.E.	Pitman Publications McGraw Hill, New York Pearson Education, Inc., New	Edition and Year 1983 2000
SI No Textbo 1 2 3 Refere	The students will have to answer to	five full questions, se Name of the Author/s Peck H Dieter, G.E. Bralla, James G. Eggert, R.J	Pitman Publications McGraw Hill Co.Ltd McGraw Hill, New York Pearson Education, Inc., New Jersey	Edition and Year 1983 2000 1986
SI No Textbo 1 2 3 Refere	The students will have to answer to	five full questions, se Name of the Author/s Peck H Dieter, G.E. Bralla, James G.	Pitman Publications McGraw Hill, New York Pearson Education, Inc., New	Edition and Year 1983 2000 1986 2005
SI No Textbo 1 2 3 Refere	The students will have to answer to	five full questions, se Name of the Author/s Peck H Dieter, G.E. Bralla, James G. Eggert, R.J	Pitman Publications McGraw Hill Co.Ltd McGraw Hill, New York Pearson Education, Inc., New Jersey Blackie and Son Limited,	Edition and Year 1983 2000 1986 2005
SI No Textbo 1 2 3 Reference 1 2	The students will have to answer in Title of the Book Designing for Manufacture Engineering Design: A Materials and processing Approach Handbook of Products Design for Manufacturing: A Practical Guide to Low-cost Production Engineering Design Engineering Design	five full questions, se Name of the Author/s Peck H Dieter, G.E. Bralla, James G. Eggert, R.J Matousek , R	Pitman Publications McGraw Hill Co.Ltd McGraw Hill, New York Pearson Education, Inc., New Jersey Blackie and Son Limited, Glasgow	Edition and Year 1983 2000 1986 2005 1967

Prabhakar, O.

Linberg, Roy A.

Trucks, H.E.

Mich., Dearborn, SME

U.S.A.

Allyn and Bacon, Boston,

2nd ed.,1987

4th ed., 1990

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER – VII					
Professional Elective 2					
	AUTOMATION & RO	BOTICS			
Course Code	18ME732	CIE Marks	40		
Teaching Hours / Week (L:T:P) 3:2:0 SEE Marks 60					
Credits	03	Exam Hours	03		
Course Learning Objectives	•				

Course Learning Objectives:

- To identify potential areas for automation and justify need for automation.
- To select suitable major control components required to automate a process or an activity
- To study the various parts of robots and fields of robotics.
- To study the various kinematics and inverse kinematics of robots.
- To study the control of robots for some specific applications.

Module-1:

Introduction to automation:

Basic elements of an automated system, advanced automation functions, levels of automation, process industries versus discrete manufacturing industries, continuous versus discrete control, computer process control. Hardware components for automation and process control, sensors, actuators, analog to digital converters, digital to analog converters, input/output devices for discrete data

Module-2:

Automated production lines:

Fundamentals of automated production lines, application of automated production lines, analysis of transfer lines, automated assembly systems, fundamentals of automated assembly systems, quantitative analysis of assembly systems, automatic identification methods, barcode technology, radio frequency identification, other AIDC technologies

Module-3: Industrial Robotics

Robotic configuration, robot anatomy and related attributes, robot control systems, end effectors, sensors in robotics, industrial robot applications, robot accuracy and repeatability, different types of robots, various generations of robots, degrees of freedom – Asimov's laws of robotics, dynamic stabilization of robots.

Module-4: Spatial descriptions and transformations

Robot actuators and Feedback components: Actuators: Pneumatic, Hydraulic actuators, electric & stepper motors, comparison. Position sensors –potentiometers, resolvers, encoders –Velocity sensors, Tactile sensors, Proximity sensors. Manipulator Kinematics: Homogeneous transformations as applicable to rotation and translation -D-H notation, Forward and inverse kinematics.

Module-5: Robot programming

Introduction, levels of robot programming, requirements of robot programming language, problems pertaining to robot programming languages, offline programming systems, central issues in OLP systems, automating subtasks in OLP systems, simple programs on robot applications.

Course Outcomes: At the end of the course, the student will be able to:

CO1: Translate and simulate a real time activity using modern tools and discuss the Benefits of automation. CO2: Identify suitable automation hardware for the given application.

CO3: Recommend appropriate modelling and simulation tool for the given manufacturing Application.

CO4: Explain the basic principles of Robotic technology, configurations, control and Programming of Robots.

CO5: Explain the basic principles of programming and apply it for typical Pick & place, Loading & unloading and palletizing applications

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.

- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	k/s	1		
1	Computer Integrated Manufacturing	Mikell P. Groover	Pearson	3rd edition, 2009
2	Introduction to robotics mechanics and control	John J. Craig	Pearson	3rd edition, 2009
Referen	ce Books			
1	Robotics for Engineers	Yoram Koren	McGraw Hill International	1st edition, 1985.
2	Industrial Robotics	Weiss, Nagel	McGraw Hill International	2nd edition, 2012
3	Robotic Engineering - An Integrated approach	Klafter, Chmielewski and Negin	РНІ	1st edition, 2009
4	Computer Based Industrial Control	Krishna Kant	EEE-PHI	2nd edition,2010
5	An Introduction to Automated Process Planning System	Tiess Chiu Chang & Richard A. Wysk.		

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER – VII						
Professional Elective 2						
COMPUTATIONAL FLUID DYNAMICS						
Course Code	18ME733	CIE Marks	40			
Teaching Hours / Week (L:T:P) 3:0:0 SEE Marks 60						
Credits						
Course Learning Objectives:		· · ·				

ourse Learning Objectives:

- Study the governing equations of fluid dynamics
- Learn how to formulate and solve Euler's equation of motion.
- Become skilled at Representation of Functions on Computer
- Solve computational problems related to fluid flows

Module-1

Introduction to CFD and Governing Equations

Need of CFD as tool, role in R&D, continuum, material or substantial derivative or total derivative, gradient, divergence and curl operators, Linearity, Principle of Superposition. Derivation of Navier-Stokes equations in control volume (integral form) and partial differential form, Euler equations (governing inviscid equations). Mathematical classification of PDE (Hyperbolic, Parabolic, Elliptic). Method of characteristics, Introduction to **Riemann Problem and Solution Techniques.**

Module-2

One-dimensional Euler's equation

Conservative, Non-conservative form and primitive variable forms of Governing equations. Flux Jacobian Is there a systematic way to diagona lize 'A'. Eigen values and Eigenvectors of Flux Jacobian. Decoupling of Governing equations, introduction of characteristic variables. Relation between the two non-conservative forms. Conditions for genuinely nonlinear characteristics of the flux Jacobian.

Introduction to Turbulence Modelling: Derivation of RANS equations and k-epsilon model.

Module-3

Representation of Functions on Computer

Need for representation of functions, Box Function, Hat Function, and Representation of sinx using hat functions: Aliasing, high frequency, low frequency. Representation error as a global error. Derivatives of hat functions, Haar functions, Machine Epsilon. Using Taylor series for representation of Derivatives.

Module-4

Finite difference method – Applied to Linear Convection equation, Laplace Equations, Convection Diffusion equations, Burgers equations, modified equations. Explicit methods and Implicit methods – as applied to applied to linear convection equation, Laplace equations, convection-diffusion equation. FTCS,FTFS,FTBS,CTCS • Jacobi Method, Gauss-Siedel, Successive Over Relaxation Method, TDMA• Von Naumann stability (linear stability) analysis. Upwind Method in Finite Difference method.

Module-5

Finite volume method Finite volume method. Finding the flux at interface.

Central schemes - Lax-Friedrichs Method, Lax-Wendroff Method, Two-Step Lax-Wendroff Method and Mac Cormack Method

Upwind Method in Finite Volume methods - Flux Splitting Method Steger and Warming, vanLeer, Roe's Method and finding Roe's Averages.

Course Outcomes:

At the end of the course the student will be able to:

CO1: Understand mathematical characteristics of partial differential

equations.

CO2: Explain how to classify and computationally solve Euler and Navier-Stokes equations.

- CO3: Make use of the concepts like accuracy, stability, consistency of numerical methods for the governing equations.
- CO4: Identify and implement numerical techniques for space and time integration of partial differential equations.
- CO5: Conduct numerical experiments and carry out data analysis.

CO6: Acquire basic skills on programming of numerical methods used to solve the Governing equations.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	ook/s			
1	Computational Fluid Dynamics	T.j.chung	Cambridge University Press	
2	Computational fluid dynamics and heat transfer	Ghoshdastidar	Cengage learning	2017
3	Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics – Vol 1 & Vol 2	Charles Hirsch	Butterworth- Heinemann	2007
4	Numerical Heat Transfer and Fluid Flow	SuhasPatankar	Taylor and Francis Publisher	
5	Introduction Computational Fluid Dynamics -Development, Application and Analysis	Atul Sharma	Wiely Publisher	
Refere	nce Books			
1	Computational fluid mechanics and heat transfer	Pletcher, r. H., Tannehill, j. C., Anderson, d.	Crc press, ISBN 9781591690375	3rd ed, 2011
2	Fundamentals of engineering numerical analysis	Moin, p	Cambridge university press, , ISBN 9780521805261	2nd ed, 2010
3	Numerical methods for engineering application	Ferziger, j. H	Wiley	2nd ed, 1998
4	Computational methods for fluid dynamics	Ferziger, j. H., Peric, m	Springer	3rd ed
5	Numerical methods for conservation laws	eth Zurich, birkhauser		pp-199
6	Practical Introduction	Eleuterio F Toro	Springer	

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER – VII

Professional Elective 2

TOTAL QUALITY MANAGEMENT				
Course Code	18ME734	CIE Marks	40	
Teaching Hours /Week (L:T:P)	3:0:0	SEE Marks	60	
Credits	03	Exam Hours	03	

Course Learning Objectives:

- Understand various approaches to TQM
- Understand the characteristics of quality leader and his role.
- Develop feedback and suggestion systems for quality management.
- Enhance the knowledge in Tools and Techniques of quality management.

Module-1

Principles and Practice: Definition, basic approach, gurus of TQM, TQM Framework, awareness, defining quality, historical review, obstacles, benefits of TQM. Quality Management Systems: Introduction, benefits of ISO registration, ISO 9000 series of standards, ISO 9001 requirements.

Module-2

Leadership: Definition, characteristics of quality leaders, leadership concept, characteristics of effective people, ethics, the Deming philosophy, role of TQM leaders, implementation, core values, concepts and framework, strategic planning communication, decision making,

Module-3

Customer Satisfaction and Customer Involvement: Customer Satisfaction: customer and customer perception of quality, feedback, using customer complaints, service quality, translating needs into requirements, customer retention, case studies. Employee Involvement – Motivation, employee surveys, empowerment, teams, suggestion system, recognition and reward, gain sharing, performance appraisal, unions and employee involvement, case studies.

Module-4

Continuous Process Improvement: process, the Juran trilogy, improvement strategies, types of problems, the PDSA Cycle, problem-solving methods, Kaizen, reengineering, six sigma, case studies. Statistical Process Control: Pareto diagram, process flow diagram, cause and effect diagram, check sheets, histograms, statistical fundamentals, Control charts, state of control, out of control process, control charts for variables, control charts for attributes, scatter diagrams, case studies.

Module-5

Total Productive Maintenance (TPM): Definition, Types of Maintenance, Steps in introduction of TPM in an organization, Pillars of TPM – 5S, Jishu Hozen, Quality Maintenance, Planned Maintenance.

Quality by Design (QbD): Definition, Key components of QbD, Role of QbD in Pharmaceutical Industry, Benefits and Challenges of QbD.

Environmental Management Systems (EMS): Definition, Basic EMS, EMS under ISO 14001, Costs and Benefits of EMS.

Course Outcomes: At the end of the course, the student will be able to:

CO1: Explain the various approaches of TQM

CO2: Infer the customer perception of quality

CO3: Analyse customer needs and perceptions to design feedback systems.

CO4: Apply statistical tools for continuous improvement of systems

CO5: Apply the tools and technique for effective implementation of TQM.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	ok/s			
1	Total Quality Management	Dale H. Besterfield	Pearson Education India,	Edition 03. ISBN: 8129702606,
2	Total Quality Management for Engineers	M. Zairi	Wood head Publishing	ISBN:185573024 3
Referer	nce Books	L	I	
1	Managing for Quality and Performance Excellence	James R. Evans and William M Lindsay	Cengage Learning.	9th edition
2	Four revolutions in management	Shoji Shiba, Alan Graham, David Walden	Oregon	1990
3	Organizational Excellence through TQM	H. Lal	New age Publications	2008
4	Engineering Optimization Methods and Applications	A Ravindran, K, M. Ragsdell	Willey India Private Limited	2nd Edition,2006
5	Introduction to Operations Research- Concepts and Cases	F.S. Hillier. G.J. Lieberman	Tata McGraw Hill	9 th Edition, 2010

Choice Based Crec		-	B. E. MECHANICAL ENGINEERING				
	Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER – VII						
	Professional Elective 2 OPERATIONS RESEARCH						
Course Code	18ME735	CIE Marks	40				
	3:0:0	SEE Marks	60				
Teaching Hours /Week (L:T:P) Credits	03	Exam Hours	03				
Course Learning Objectives:	03	LXaIII HOUIS	03				
 To enable the students to u organization with a quantita To enable the students to optimal solutions to probl 	nderstand the scientific methods tive basis of decision making. understand the importance of v ems involving limited resources	various tools and tech	nniques in finding				
machinery. Module-1							
Characteristics and limitations of O LPP- Formulation of problems as L.P. Module-2 LPP: Simplex method, Canonical ar Solutions to LPP by Simplex method	P. Solutions to LPP by graphical m nd Standard form of LP problem nd, Big-M Method and two-phase	nethod (Two Variables n, slack, surplus and a e Simplex Method, D). artificial variables				
Concept of Duality, writing Dual of g Module-3	iven LPP. Solutions to L.P.P by Dua	al Simplex Method.					
Transportation Problem: Formulation	on of transportation problem to	nos initial basis forsi	hla colution using				
Distribution (MODI) method. Unba application of transportation proble by Hungarian method, Special ca	m. Assignment Problem-Formula		•				
problems. Travelling Salesman Prob by Little's method. Numerical Proble	lem (TSP). Difference between a	unbalanced, Maximiz	ation assignmen				
	lem (TSP). Difference between a	unbalanced, Maximiz	ation assignment				
by Little's method. Numerical Proble Module-4 Network analysis: Introduction, Cor and AOA diagrams; Critical path mer floats in networks, PERT networks completion time of project; Cost a Queuing systems and their charact Lee's notation of Queuing, empirical	lem (TSP). Difference between as ms. Instruction of networks, Fulkersor thod to find the expected comple and the probability of nalysis in networks. Crashing of eristics, Pure-birth and Pure-dea	unbalanced, Maximiz ssignment and T.S.P, F n's rule for numbering tion time of a project, f completing a projec networks- Problems. ath models (only equa	ation assignment inding best route g the nodes, AON determination of ct, predicting the Queuing Theory ations), Kendall 8				
by Little's method. Numerical Proble Module-4 Network analysis: Introduction, Cor and AOA diagrams; Critical path met floats in networks, PERT networks completion time of project; Cost a Queuing systems and their charact Lee's notation of Queuing, empirical Module-5	lem (TSP). Difference between as ms. Instruction of networks, Fulkerson thod to find the expected comple and the probability of nalysis in networks. Crashing of eristics, Pure-birth and Pure-dea queuing models – Numerical on I	unbalanced, Maximiz ssignment and T.S.P, F n's rule for numbering tion time of a project, f completing a project networks- Problems. ath models (only equa M/M/1 and M/M/C Qu	ation assignmen Finding best route g the nodes, AON , determination o ct, predicting the Queuing Theory ations), Kendall & Jeuing models.				
by Little's method. Numerical Proble Module-4 Network analysis: Introduction, Cor and AOA diagrams; Critical path met floats in networks, PERT networks completion time of project; Cost a Queuing systems and their charact Lee's notation of Queuing, empirical Module-5 Game Theory: Definition, Pure Strat Dominance, Solution of games wit Arithmetic method, Solution of 22 Sequencing: Basic assumptions, Joh rules, sequencing using Johnson's machines. Sequencing of2 jobs on 'n	lem (TSP). Difference between as ms. Instruction of networks, Fulkersor thod to find the expected comple a, determining the probability of nalysis in networks. Crashing of eristics, Pure-birth and Pure-dea queuing models – Numerical on I regy problems, Saddle point, Max th Saddle point. Mixed Strategy Xn m and mX2 games by grap inson's algorithm, sequencing 'n rule-'n' jobs on 2 machines, 'n' n' machines using graphical method	unbalanced, Maximiz ssignment and T.S.P. F n's rule for numbering tion time of a project, f completing a project networks- Problems. ath models (only equa M/M/1 and M/M/C Qua k-Min and Min-Max cr problems. Solution phical method. Formu ' jobs on single mach ' jobs on 3 machines pd.	ation assignment Finding best route g the nodes, AON determination of ct, predicting the Queuing Theory ations), Kendall & ueuing models. iteria, Principle of of 2X2 games by alation of games ine using priority				
by Little's method. Numerical Problet Module-4 Network analysis: Introduction, Cor and AOA diagrams; Critical path met floats in networks, PERT networks completion time of project; Cost a Queuing systems and their charact Lee's notation of Queuing, empirical Module-5 Game Theory: Definition, Pure Strat Dominance, Solution of games wit Arithmetic method, Solution of 22 Sequencing: Basic assumptions, Joh rules, sequencing using Johnson's	lem (TSP). Difference between as ms. Astruction of networks, Fulkersor thod to find the expected comple 5, determining the probability of nalysis in networks. Crashing of eristics, Pure-birth and Pure-dea queuing models – Numerical on I regy problems, Saddle point, Max ch Saddle point. Mixed Strategy Xn m and mX2 games by grap inson's algorithm, sequencing 'n rule-'n' jobs on 2 machines, 'n' n' machines using graphical methol course, the student will be able t	unbalanced, Maximiz ssignment and T.S.P. F n's rule for numbering etion time of a project, f completing a project networks- Problems. ath models (only equa M/M/1 and M/M/C Qua K-Min and Min-Max cr problems. Solution oblical method. Formut ' jobs on single mach ' jobs on 3 machines od. o:	ation assignmen Finding best route g the nodes, AON , determination o ct, predicting the Queuing Theory ations), Kendall & ueuing models. iteria, Principle o of 2X2 games by alation of games nine using priority s, 'n' jobs on 'm				

Assignment and travelling salesman problems.

- CO4: Solve problems on game theory for pure and mixed strategy under competitive environment.
- CO5: Solve waiting line problems for M/M/1 and M/M/K queuing models.
- CO6: Construct network diagrams and determine critical path, floats for deterministic and PERT networks including crashing of Networks
- CO7: Determine minimum processing times for sequencing of n jobs-2 machines, n jobs-3 machines, n jobs-m machines and 2 jobs-n machines using Johnson's algorithm.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	k/s			
1	Operations Research	P K Gupta and D S Hira	S. Chand and Company LTD. Publications, New Delhi	2007
2	Operations Research, An Introduction	Hamdy A. Taha	PHI Private Limited	Seventh Edition, 2006
Referen	ce Books			
1	Operations Research, Theory and Applications	J K Sharma	Trinity Press, Laxmi Publications Pvt.Ltd.	Sixth Edition, 2016
2	Operations Research	Paneerselva n	PHI	
3	Operations Research	A M Natarajan, P Balasubram ani	Pearson Education,	2005
4	Introduction to Operations Research	Hillier and Lieberman	McGraw Hill	8thEd

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER – VII Professional Elective 3					
	ADDITIVE MANUFACT	FURING			
Course Code	18ME741	CIE Marks	40		
Teaching Hours /Week (L:T:P) 3:0:0 SEE Marks 60					
Credits 03 Exam Hours 03					

- To know the principle methods, areas of usage, possibilities and limitations of the Additive Manufacturing technologies.
- To be familiar with the characteristics of the different materials those are used in Additive Manufacturing.
- To know the principles of polymerization and powder metallurgy process, extrusion-based system printing processes, sheet lamination processes, beam deposition processes, direct write technologies and Direct Digital Manufacturing.
- To get exposed to process selection, software issues and post processing.

Module-1

Introduction and basic principles: Need for Additive Manufacturing, Generic AM process, stereoli tho graphy or 3dprinting, rapid proto typing the benefits of AM, distinction between AM and CNC machining, other related technologies- reverse engineering technology.

Development of Additive Manufacturing Technology: Introduction, computers, computer-aidedde sign technology, other associated technologies, the use of layers, classification of AM processes, metals ystems, hybrid systems, milestones in AM development.

Additive Manufacturing Process chain: Introduction, the eight steps in additive manufacture, variations from one AM machine to another ,metal systems, maintenance of equipment, materials handling issues, design for AM, and application areas.

Module-2

Photo polymerization processes: Stereolitho graphy (SL), Materials, SL resin curing process, Micro-stereoli thography, Process Benefits and Drawbacks, Applications of Photo polymerization Processes.

Powder bedfusion processes: Introduction, Selective laser Sintering (SLS), Materials, Powder fusion mechanism, SLS Metal and ceramic part creation, Electron Beam melting (EBM), Process Benefits and Drawbacks, Applications of Powder Bed Fusion Processes.

Extrusion-based systems: Fused Deposition Modelling (FDM), Principles, Materials, Plotting and path control, Bio-Extrusion, Process Benefits and Drawbacks, Applications of Extrusion-Based Processes.

Module-3

Printing Processes: evolution of printing as an additive manufacturing process, research achievements in printing deposition, technical challenges of printing, printing process modeling, material modification methods, three-dimensional printing, advantages of binder printing

Sheet Lamination Processes: Materials, Laminated Object Manufacturing (LOM), Ultrasonic Consolidation (UC), Gluing, Thermal bonding, LOM and UC applications.

Beam Deposition Processes: introduction, general beam deposition process, description material delivery, BD systems , process parameters, typical materials and microstructure, processing–structure–properties relationships, BD benefits and drawbacks.

Direct Write Technologies: Background ,ink -basedDW,laser transfer, DW thermals pray,DW beam deposition,DW liquid-phase directde position.

Module-4

Guidelines for Process Selection: Introduction, selection methods for apart, challenges of selection, example system for preliminary selection, production planning and control.

Software issues for Additive Manufacturing: Introduction, preparation of cad models – the STL file, problems with STL files, STL file manipulation.

Post- Processing: Support material removal, surface texture improvements, preparation for use as a pattern, property enhancements using non-thermal techniques and thermal techniques.

Module-5

The use of multiple materials in additive manufacturing: Introduction, multiple material approaches, discrete multiple material processes, porous multiple material processes, blended multiple material processes, commercial applications using multiple materials, future directions.

AM Applications: Functional models, Pattern for investment and vacuum casting, Medical models, art models, Engineering analysis models, Rapid tooling, new materials development, Bi-metallic parts, Remanufacturing. Application: Examples for Aerospace, defense, automobile, Bio-medical and general engineering industries.

Direct digital manufacturing: Align Technology, siemens and phonak, DDM drivers, manufacturing vs. prototyping, life- cycle costing, future of direct digital manufacturing.

Course Outcomes: At the end of the course the student will be able to:

- CO1: Demonstrate the knowledge of the broad range of AM processes, devices, capabilities and materials that are available.
- CO2: Demonstrate the knowledge of the broad range of AM processes, devices, capabilities and materials that are available.
- CO3: Understand the various software tools, processes and techniques that enable advanced/additive manufacturing.
- CO4: Apply the concepts of additive manufacturing to design and create components that satisfy product development/prototyping requirements, using advanced/additive manufacturing devices and processes.
- CO6: Understand characterization techniques in additive manufacturing.

CO7: Understand the latest trends and business opportunities in additive manufacturing.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbook	/s	1	1	1
1	Additive Manufacturing Technologies Rapid Prototyping to Direct Digital Manufacturing	l. Gibson l D. W. Rosen l B. Stucker	Springer New York Heidelberg Dordrecht, London	ISBN: 978-1- 4419-1119-3 e-ISBN: 978- 1-4419- 1120-9 DOI 10.1007/978 -1-4419- 1120-9
Reference	e Books			
1	"Rapid Prototyping: Principles & Applications	Chua Chee Kai, Leong Kah Fai	World Scientific	2003
2	Rapid Prototyping: Theory & Practice	Ali K. Kamrani,	Springer	2006

		EmandAbouel Nasr,		
3	Rapid Manufacturing: The Technologies and Applications of Rapid Prototyping and Rapid Tooling"	D.T. Pham, S.S. Dimov	Springer	2001
4	Rapid Prototyping: Principles and Applications in Manufacturing	RafiqNooran	John Wiley & Sons	2006
5	Additive Manufacturing Technology	Hari Prasad, A.V.Suresh	Cengage	2019
6	Understanding additive manufacturing: rapid prototyping, rapid tooling, rapid manufacturing	Andreas Gebhardt	Hanser Publishers	2011

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER – VII Professional Elective 3					
SUSTAINABLE BUILDING C	OOLING TECHNOLOGIES				
18ME742	CIE Marks	40			
Teaching Hours / Week (L:T:P) 3:0:0 SEE Marks 60					
Credits 03 Exam Hours 03					
	edit System (CBCS) and Out SEMESTER – VI Professional Electi SUSTAINABLE BUILDING C 18ME742 3:0:0	edit System (CBCS) and Outcome Based Education (OBE) SEMESTER – VII Professional Elective 3 SUSTAINABLE BUILDING COOLING TECHNOLOGIES 18ME742 CIE Marks 3:0:0 SEE Marks			

Course Learning Objectives:

- To provide an overview of emerging delivery systems for high performance green buildings and the basis on which their sustainability can be evaluated
- To know the concepts of calculations of heating and cooling loads and the related economics.
- To learn the importance of green fuels and its impact on environment.
- To expose the students to sustainable cooling technologies.

Module-1

Social and Environmental Issues related to conventional Refrigeration and Air conditioning: Climate Change and energy poverty implications of energy consumption and refrigerants use by conventional Vapor-Compression based RAC technologies, Global and Indian environmental, energy efficiency and green building policies, laws and rules warranting a trajectory shift in the RAC economy, Introduction to Thermal comfort as an 'ends' and cooling systems as a 'means', Socio-economic and environmental benefits of a Negawatt approach to energy conservation vs. a Megawatt approach towards power generation.

Module-2

Thermal Comfort, Climate Analysis and Psychrometry: The 'human thermal comfort' lens and its implications for cooling system design, Progressive models for addressing human thermal comfort needs, Thermodynamics of human body, Factors affecting human comfort, Introduction to the ASHRAE Std. 55, Adaptive Comfort Model and the Indian Model for Adaptive Comfort (IMAC) and its implications for mitigating climate change and energy consumption from cooling technologies, Tools for predicting thermal comfort in buildings, Principles and tools for climate analysis, Composition of Psychrometric Charts, Psychrometric processes of conventional and sustainable cooling technologies and representation on psychrometric chart, Application of psychrometry to design conventional and sustainable cooling technologies.

Indoor Air Quality and Building Cooling Load Modelling:

Addressing trade-offs between indoor air quality requirements, daylighting needs, and solar heat gain reduction in artificially cooled buildings. Fortune offerting building cooling loads. Building cooling loads

Refrigeration Systems and Refrigerants:

Thermodynamics of Vapor Compression Refrigeration (VCR) and Vapor Absorption Machine (VAM) Cycles, Equipment used in commercial and residential VCR and VAM systems, Physical, Chemical, Thermodynamic and Environmental properties of Refrigerants and Refrigerant mixtures (zeotropic and azeotropic mixtures) used in conventional VCR system, Absorbent – Refrigerant combinations (Water-Ammonia and Lithium-Bromide) used in VAM systems, Physical, Chemical, Thermodynamic and Environmental properties of emerging Natural Refrigerants for VCR systems.

Module-4

Air conditioning:

Air conditioning demand scenarios for India and associated health, social justice, energy access, and environmental Implications for its peoples and communities, Potential sustainable air conditioning scenarios for India, Heat transfer and psychrometric principles of air conditioning cycles, Engineering principles of air conditioning components, Air conditioning coefficient-of-performance calculation, Energy efficient air conditioning system, Energy and greenhouse gas emissions-based performance comparison of natural refrigerant and f-gas based air conditioners.

Module-5

Sustainable Cooling Technologies:

Radical social justice fostering, energy conservation, and climate change mitigation potential of natural cooling, Design principles of natural and sustainable cooling systems, Science and engineering design principles of a) Direct, Indirect, and Hybrid (Direct-Indirect and DX) Evaporative Cooling technology, b) Structure Cooling, c) Radiant Cooling Systems, and d) Solar VAM technology, Basic equipment sizing calculations, System performance assessment methods, Comparative energy consumption, greenhouse gas emissions and life-cycle cost case studies for residential and commercial applications of conventional and sustainable cooling technologies.

Course Outcomes: At the end of the course, the student will be able to:

- CO1: Empathize with sustainable cooling as a means of enhancing social justice in India and mitigating climate change through their intellectual capabilities and ethical orientation
- CO2: Compute and Interpret cooling and heating loads in a building and how they could be efficiently managed by using building energy modelling software
- CO3: Estimate the performance of airconditioning systems using the principles of thermodynamics, heat transfer, and psychometry

CO4: Calculate and interpret the energy, cost, and greenhouse gas emissions performance of conventional

and sustainable cooling technologies.

Co6: Conduct building and sustainable cooling modelling projects on a sophisticated building energy modelling software.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	ok/s			
1	Refrigeration and Airconditioning	C P Arora	Tata McGraw Hill	3 rd Edition
2	Heating, Ventilating and Airconditioning	Faye C McQuiston, Jerald D. Parker, Jeffrey D. Spitler	Wiley Indian Private Ltd.	
Referen	nce Books			
1	Radiant Heating and Cooling Handbook	Richard D. Watson	McGraw-Hill Publication	2002
	tps://www.accessengineeringlibrary. ook#p2000a97e9970iii001	.com/browse/radian	it-heating-and-cooling-	
2	Evaporative Cooling		CAREL	
Link: <u>ht</u>	tp://www.carel.com/-evaporative-co	oling-book		

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER – VII					
Professional Elective 3					
	THEORYOF PLAST	ΙΟΙΤΥ			
Course Code	18ME743	CIE Marks	40		
Teaching Hours /Week (L:T:P) 3:0:0 SEE Marks 60					
Credits 03 Exam Hours 03					
Course Learning Objectives:	•				

Course Learning Objectives:

- To introduce the concepts of Plasticity and mechanism of plastic deformation in metals.
- To expose the students to elasto-plastic problems involving plastic deformation of beams and bars.
- To introduce the concepts of slip line field theory.

Module-1

Brief review of fundamentals of elasticity: Concept of stress, stress invariants, principal Stresses, octahedral normal and shear stresses, spherical and deviatoric stress, stress transformation; concept of strain, engineering and natural strains, octahedral strain, deviator and spherical strain tensors, strain rate and strain rate tensor, cubical dilation, generalized Hooke's law, numerical problems.

Module-2

Plastic Deformation of Metals: Crystalline structure in metals, mechanism of plastic deformation, factors affecting plastic deformation, strain hardening, recovery, re crystallization and grain growth, flow figures or Luder's cubes.

Yield Criteria: Introduction, yield or plasticity conditions, Von Mises and Tresca criterion, geometrical representation vield surface vield locus (two-dimensional stress space) experimental evidence for vield **Module-3**

Stress Strain Relations: Idealised stress-strain diagrams for different material models, empirical equations, Levy-Von Mises equation, Prandtl -Reuss and Saint Venant theory, experimental verification of Saint Venant's theory of plastic flow. Concept of plastic potential, maximum work hypothesis, mechanical work for deforming a plastic substance.

Module-4

Bending of Beams: Stages of plastic yielding, analysis of stresses, linear and nonlinear stress strain curve, problems.

Torsion of Bars: Introduction, plastic torsion of a circular bar, elastic perfectly plastic material, elastic work hardening of material, problems.

Module-5

Slip Line Field Theory: Introduction, basic equations for incompressible two-dimensional flows, continuity equations, stresses in conditions of plain strain, convention for slip lines, geometry of slip line field, properties of the slip lines, construction of slip line nets.

Course Outcomes: At the end of the course the student will be able to:

CO1: Understand stress, strain, deformations, relation between stress and strain and plastic deformation in solids.

CO2: Understand plastic stress-strain relations and associated flow rules.

CO3: Perform stress analysis in beams and bars including Material nonlinearity.

CO4: Analyze the yielding of a material according to different yield theory for a given state of stress.

CO5: Interpret the importance of plastic deformation of metals in engineering problems.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.

- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textb	ook/s			
1	Theory of Plasticity	Chakraborty	Elsevier	3rd Edition
2	Theory of Plasticity and Metal forming Process	Sadhu Singh	Khanna Publishers, Delhi	
Refer	ence Books			
1	Engineering Plasticity-Theory and Application to Metal Forming Process	R.A.C. Slater	McMillan Press Ltd.	
2	Basic Engineering Plasticity	DWA Rees	Elsevier	1st Edition
3	Engineering Plasticity	W. Johnson and P. B. Mellor	Van NoStrand Co. Ltd	2000
4	Advanced Mechanics of solids	L. S. Srinath	Tata Mc. Graw Hill	2009

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER – VII Professional Elective 3					
	MECHATRONIC	S			
Course Code	Course Code 18ME744 CIE Marks 40				
Teaching Hours /Week (L:T:P) 3:0:0 SEE Marks 60					
Credits					

Course Learning Objectives:

- To acquire a strong foundation in science and focus in mechanical, electronics, control, software, and computer engineering, and a solid command of the newest technologies.
- To understand the evolution and development of Mechatronics as a discipline.
- To substantiate the need for interdisciplinary study in technology education
- To understand the applications of microprocessors in various systems and to know the functions of each element.
- To demonstrate the integration philosophy in view of Mechatronics technology
- To be able to work efficiently in multidisciplinary teams.

Module-1

Introduction: Scope and elements of mechatronics, mechatronics design process, measurement system, requirements and types of control systems, feedback principle, Basic elements of feedback control systems, Classification of control system. Examples of Mechatronics Systems such as Automatic Car Park system, Engine management system, Antilock braking system (ABS) control, Automatic washing machine.

Transducers and sensors: Definition and classification of transducers, Difference between transducer and sensor, Definition and classification of sensors, Principle of working and applications of light sensors, Potentiometers, LVDT, Capacitance sensors, force and pressure sensors, Strain gauges, temperature sensors, proximity switches and Hall Effect sensors.

Module-2

Signal Conditioning: Introduction – Hardware – Digital I/O, Analog to digital conversions, resolution, Filtering Noise using passive components – Registers, capacitors, amplifying signals using OP amps. Digital Signal Processing – Digital to Analog conversion, Low pass, high pass, notch filtering. Data acquisition systems (DAQS), data loggers, Supervisory control and data acquisition (SCADA), Communication methods.

Electro Mechanical Drives:Relays and Solenoids – Stepper Motors – DC brushed motors – DC brushless motors – DC servo motors – 4-quadrant servo drives, PWM's – Pulse Width Modulation.

Module-3

Microprocessor & Microcontrollers: Introduction, Microprocessor systems, Basic elements of control systems, Microcontrollers, Difference between Microprocessor and Microcontrollers.

Microprocessor Architecture: Microprocessor architecture and terminology-CPU, memory and address, I/O and Peripheral devices, ALU, Instruction and Program, Assembler, Data Registers, Program Counter, Flags, Fetch cycle, write cycle, state, bus interrupts. Intel's 8085A Microprocessor.

Module-4

Programmable Logic Controller: Introduction to PLCs, Basic structure of PLC, Principle of operation, input and output processing, PLC programming language, ladder diagram, ladder diagrams circuits, timer counters, internal relays, master control, jump control, shift registers, data handling, and manipulations, analogue input and output, selection of PLC for application.

Application of PLC control: Extending and retracting a pneumatic piston using latches, control of two pneumatic pistons, control of process motor, control of vibrating machine, control of process tank, control of conveyer motor etc.

Module-5

Mechatronics in Computer Numerical Control (CNC) machines: Design of modern CNC machines - Machine Elements: Different types of guide ways, Linear Motion guideways. Bearings: anti-friction bearings,

hydrostatic bearing and hydrodynamic bearing. Re-circulating ball screws. Typical elements of open and closed loop control systems. Adaptive controllers for machine tools.

Mechatronics Design process: Stages of design process – Traditional and Mechatronics design concepts – Case studies of Mechatronics systems – Pick and place Robot – Automatic car park barrier.

Course Outcomes: At the end of the course the student will be able to:

CO1: Illustrate various components of Mechatronics systems.

CO2: Assess various control systems used in automation.

CO3: Design and conduct experiments to evaluate the performance of a mechatronics system or component with

respect to specifications, as well as to analyse and interpret data.

CO4: Apply the principles of Mechatronics design to product design.

CO5: Function effectively as members of multidisciplinary teams.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	ook/s			
1	Mechatronics-Principles Concepts and Applications	Nitaigour Premchand Mahalik	Tata McGraw Hill	1 st Edition, 2003
2	Mechatronics–Electronic Control Systems in Mechanical and Electrical Engineering,	W.Bolton	Pearson Education	1stEdition, 2005
Refere	ence Books	1		1
1	Mechatronics	HMT Ltd	Tata Mc Graw Hill	1st Edition, 2000 ISBN:978007 4636435
2	Mechatronics: Integrated Mechanical Electronic Systems	K.P. Ramachandran, G.K. Vijayaraghavan, M.S. Balasundaram.	Wiley India Pvt. Ltd. New Delhi	2008
3	Introduction to Mechatronics and Measurement Systems	David G. Aldatore, Michael B. Histand	McGraw-Hill Inc USA	2003
4	Introduction to Robotics: Analysis, Systems, Applications.	Saeed B. Niku,	Person Education	2006
5	Mechatronics System Design	Devdas Shetty, Richard A. kolk	Cengage publishers.	second edition

Choice Based Cr	B. E. MECHANICAL ENG edit System (CBCS) and Out SEMESTER – VI Professional Electi	come Based Education (OBE)	
	PROJECT MANAGE	MENT	
Course Code	18ME745	CIE Marks	40
Teaching Hours /Week (L:T:P)	3:0:0	SEE Marks	60
Credits	03	Exam Hours	03

Course Learning Objectives:

- To understand how to break down a complex project into manageable segments and use of effective project management tools and techniques to arrive at solution and ensure that the project meets its deliverables and is completed within budget and on schedule.
- To impart knowledge on various components, phases, and attributes of a project.
- To prepare students to plan, develop, lead, manage, and successfully implement and deliver projects within their chosen practice area.

Module-1

Introduction: Definition of project, characteristics of projects, understand projects, types of projects, scalability of project tools, project roles Project Selection and Prioritization – Strategic planning process, Strategic analysis, strategic objectives, portfolio alignment – identifying potential projects, methods of selecting projects, financial mode / scoring models to select projects, prioritizing projects, securing and negotiating projects.

Module-2

Planning Projects: Defining the project scope, Project scope checklist, Project priorities, Work Breakdown Structure (WBS), Integrating WBS with organisation, coding the WBS for the information system. Scheduling Projects: Purpose of a project schedule, historical development, how project schedules are limited and created, develop project schedules, uncertainty in project schedules, Gantt chart.

Module-3

Resourcing Projects: Abilities needed when resourcing projects, estimate resource needs, creating staffing management plant, project team composition issues, Budgeting Projects: Cost planning, cost estimating, cost budgeting, establishing cost control. Project Risk Planning: Risk Management Planning, risk identification, risk analysis, risk response planning, Project Quality Planning and Project Kick off: Development of quality concepts, project quality management plan, project quality tools, kick off project, baseline and communicate project management plan, using Microsoft Project for project baselines.

Module-4

Performing Projects: Project supply chain management: - Plan purchasing and acquisitions, plan contracting, contact types, project partnering and collaborations, project supply chain management. 28 Project Progress and Results: Project Balanced Scorecard Approach, Internal project, customer, financial issues, Finishing the project: Terminate project early, finish projects on time, secure customer feedback and approval, knowledge management, perform administrative and contract closure.

Module-5

Network Analysis: Introduction, network construction - rules, Fulkerson's rule for numbering the events, AON and AOA diagrams; Critical path method (CPM) to find the expected completion time of a project, floats; PERTfor finding expected duration of an activity and project, determining the probability of completing a project, predicting the completion time of project; crashing of simple projects.

Course Outcomes: At the end of the course the student will be able to:

- CO1: Understand the selection, prioritization and initiation of individual projects and strategic role of project management.
- CO2: Understand the work breakdown structure by integrating it with organization.
- CO3: Understand the scheduling and uncertainty in projects.

CO4: Understand risk management planning using project quality tools.

CO5: Understand the activities like purchasing, acquisitions, contracting, partnering and collaborations related to performing projects.

CO6: Determine project progress and results through balanced scorecard approach

CO7: Draw the network diagram to calculate the duration of the project and reduce it using crashing.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	pok/s			
1	Project Management	Timothy J Kloppenborg	Cengage Learning	Edition 2009
2	Project Management -A systems approach to planning scheduling and controlling	Harold kerzner	CBS publication	
3	Project Management	S Choudhury	McGraw Hill Education (India) Pvt. Ltd. New Delhi	2016
Refere	ence Books			
1	Project Management	Pennington Lawrence	Mc Graw Hill	
2	Project Management	A Moder Joseph and Phillips New Yark	Van Nostrand Reinhold	
3	Project Management,	Bhavesh M. Patal	Vikas publishing House	

	B. E. MECHANICAL ENGINEE	-	
Choice Based Cred	it System (CBCS) and Outcom SEMESTER – VI	e Based Education (OBE)	
	Professional Elective 1		
	ENERGY AND ENVIRONME	NT	
Course Code	18ME751	CIE Marks	40
Teaching Hours / Week (L:T:P)	3:0:0	SEE Marks	60
Credits	03	Exam Hours	03
Course Learning Objectives:			
• To understand the fundamer	ntals of energy sources, energy	y use, energy efficiency, and res	ulting
environmental implications of	of various energy supplies.		
• To introduce various aspects	of environmental pollution ar	nd its control.	
• To understand the causes an	d remedies related to social is	sues like global warming, ozone	laver
depletion, climate change et		5 5,	,
		l of pollution of water and air, fo	orest
protection act, wild life prote	-		51050
Module-1			
Basic Introduction to Energy: Energ	y and power, forms of energy	gy, primary energy sources, en	nergy flows,
world energy production and consum	nption, Key energy trends in In	ndia: Demand, Electricity, Access	s to modern
energy, Energy production and t	-		•
demographics Policy and institution	al framework, Energy prices a	and affordability, Social and env	vironmental
aspects, Investment.			
Module-2			
Energy Management: Principles of Er Energy Audit: Purpose, Methodolog Certain Energy Intensive Industries Module-3			-
Environment: Introduction, Multid importance, Need for public awarene Ecosystem: Concept, Energy flow, S	ess.		·
		•	
ecological pyramids, Forest ecosyst	em, Grassianu ecosystem, De	esert ecosystem and Aquatic e	ecosystems,
Ecological succession.			
Module-4			
Environmental Pollution: Definition, Soil pollution, Marine pollution, N	loise pollution, Thermal poll	lution and Nuclear hazards, S	Solid waste
Management, Disaster management	Role of an individual in prever	ntion of pollution, Pollution case	e studies.
Module-5			
Social Issues and the Environment: C	limate change, global warmin	g, acid rain, ozone layer deplet	ion, nuclear
accidents and holocaust. Case S	tudies. Wasteland reclamati	on, Consumerism and waste	e products,
Environment Protection Act, Air (Pre	evention and Control of Pollut	ion) Act, Water (Prevention and	d control of
Pollution) Act, Wildlife Protection	Act, Forest Conservation	Act, Issues involved in enfor	rcement of
environmental legislation.			
Group assignments:			
Assignments related to e-waste ma systems; Water treatment systems; V Thermal power plants; Hydroelectric assessments etc.	Nastewater treatment plants;	Solar heating systems; Solar po	wer plants;
Course Outcomes: At the end of the	course the student will be abl	le to:	
Louise Outcomes. At the end of the	course, the student will be abl		

CO1: Understand energy scenario, energy sources and their utilization.

- CO2: Understand various methods of energy storage, energy management and economic analysis.
- CO3: Analyse the awareness about environment and eco system.

CO4: Understand the environment pollution along with social issues and acts.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	ook/s			
1	Textbook for Environmental Studies for Undergraduate Courses of all Branches of Higher Education		University grant commission and Bharathi Vidyapeeth Institute of environment education and Research, Pune	
2	Energy Management Audit & Conservation- for Module 2	Barun Kumar De	Vrinda Publication	2nd Edition 2010
Refere	nce Books		•	L.
1	Energy Management Hand book	Turner, W. C., Doty, S. and Truner, W. C	Fairmont Press	7 th Edition 2009
2	Energy Management	Murphy, W. R	Elsevier	2007
3	Energy Management Principles	Smith, C. B	Pergamum	2007
4	Environment pollution control Engineering	C S Rao	New Age International	reprint 2015, 2nd edition
5	Environmental studies	Benny Joseph	Tata McGraw Hill	2nd edition 2008

Choice Based C	B. E. MECHANICAL ENGI redit System (CBCS) and Outo	-	
	SEMESTER - VIII		
	Professional Electiv	e-4	
	AUTOMOTIVE ENGINE	ERING	
Course Code	18ME752	CIE Marks	40
Teaching Hours /Week (L:T:P)	3:0:0	SEE Marks	60
Credits	03	Exam Hours	03
Course Learning Objectives:			
 To know layout and arrang 	gement of principal parts of a	n automobile.	
• To understand the workin	g of transmission and brake sy	ystems.	
• To comprehend operation	and working of steering and	suspension systems.	
	em and its advancements.	·	
	missions and its effects on en	vironment.	
Module-1			
spark engine, Electric car. COOLING AND LUBRICATION: C circulation water cooling system, system. Module-2 TRANSMISSION SYSTEMS: Clutco mechanisms, Over drive, transfer joints. Differential and rear axle, H BRAKES: Types of brakes, mecha and working of master and whee Braking systems, purpose and ope & Numerical.	Water pump, Radiator, Signi ch-types and construction, g box, fluid flywheel, torque o lotchkiss Drive and Torque Tu nical compressed air, vacuur el cylinder, brake shoe arrang	ificance of lubrication, Splash a ear boxes- manual and auton converter, propeller shaft, slip be Drive. n and hydraulic braking syster gements, Disk brakes, drum br	natic, gear shi joints, univers ns, constructic akes, Antilock
Module-3			
STEERING AND SUSPENSION SYS Types of Front Axle, Suspensior suspension for front wheel and re- IGNITION SYSTEM: Battery Ignitio	n, Torsion bar suspension s ar wheel, Air suspension syste	ystems, leaf spring, coil sprin em.	ng, independer
Module-4			
SUPERCHARGERS AND TURBO	CHADGEDS: Noturally achir	atod onginos Earcad Indus	tion Tunor (

System. Module-5 **AUTOMOTIVE EMISSION CONTROL SYSTEMS**: Different air pollutants, formation of photochemical smog and causes. Automotive emission controls, Controlling crankcase emissions, Controlling evaporative emissions, Cleaning the exhaust gas, Controlling the air-fuel mixture, Controlling the combustion process, Exhaust gas recirculation, Treating the exhaust gas, Air-injection system, Air-aspirator system, Catalytic converter. **EMISSION STANDARDS:** Euro I, II, III and IV norms, Bharat Stage II, III, IV norms. Motor Vehicle Act.

Course Outcomes: At the end of the course, the student will be able to:

- Identify the different parts of an automobile and it's working.
- Understand the working of transmission and braking systems.
- Understand the working of steering and suspension systems and their applications.
- Selection and applications of various types of fuels and injection systems.
 Analyse the cause of automobile emissions, its effects on environment and methods to reduce the emissions.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	ok/s		,	
1	Automobile engineering Vol I and II	Kirpal Singh	Standard Publishers	12 th Edition 2011
2	Automotive Mechanics	S. Srinivasan	Tata McGraw Hill	2003 2 nd Edition
Refere	nce Books			
1	Automotive Mechanics	William H Crouse & Donald L Anglin	Tata McGraw Hill Publishing Company	10 th Edition 2007
2	Automotive Mechanics: Principles and Practices,	Joseph Heitner	D Van Nostrand Company, Inc	
3	Automobile Engineering	R. B. Gupta	Satya Prakashan	4 th edition 1984.
4	Fundamentals of Automobile Engineering	K.K.Ramalingam	Scitech Publications (India) Pvt. Ltd	

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER – VI OPEN ELECTIVE B

	INDUSTRIAL SAI	FETY	
Course Code	18ME753	CIE Marks	40
Teaching Hours / Week (L:T:P)	3:0:0	SEE Marks	60
Credits	03	Exam Hours	03

Course Learning Objectives:

- The present course highlights the importance of general safety and its prevention.
- It enables students to understand about mechanical, electrical sand chemical safety.
- The Industrial safety course helps in motivating the students to understand the reason for fire
- Its Controlling of fire by various means are highlighted.
- Importance of chemical safety, labelling of chemicals, hand signals during forklift operations in industrial and aerodromes will help in to understand and apply the techniques in practical field.
- A visit to campus, various labs, workshops, local industries and fire stations helps in analyzing the importance of safety and corrective measures through case studies.

Module-1

Terms used: accident, safety, hazard, safe, safety devices, safety guard, security, precaution, caution, appliance, slip, trip, fall. Ladders and scaffolding. Unsafe acts, reason for accidents, MSDS (material safety data sheet), computer Aided Hazard Analysis, International acts and standards OSHA, WHO. Environment act, control and abatement of environmental pollution-Biomedical waste. Lockout and tag out procedures. Safe material handling and storage. Risk analysis quantification.

Case studies: Student should identify the unsafe acts near their surroundings like housekeeping, lab as well as industrial layouts, road safety, campus layout, safety signs.

Module-2

Introduction, toxicity of products of combustion – vapour clouds – flash fire – jet fires – pool fires – autoignition, sources of ignition. Class A, B, C, D and E fire. Fire triangle, Fire extinguishers, Fire hazard and analysis, prevention of fire. Fire protection and loss prevention, steps after occurrence of fire. notice-first aid for burns, Portable fire extinguishers. Fire detection, fire alarm and firefighting systems. Safety sign boards,

instruction on portable fire extinguishers. Case studies: demonstration of fire extinguishers, visit to local fire fighting stations. Visit to fire accident sites to analyze the cause of fire and its prevention for future.

Module-3

PPE, safety guards, Mechanical hazards, workplace hazards, Forklift hazard control Safety while working with machine tools like lathe, drill press, power and band saws, grinding machines. Safety during welding, forging and pressing. Safety while handling Material, compressed gas cylinders, corrosive substance, waste drum and containers.

Case studies: Visit to machine shop, workshops, foundry lab and local industries to record the practical observation and report the same with relevant figures and comments.

Module-4

Introduction to electrical safety, Indian standards on electrical safety, Electric hazards, effect of electric current on human body, causes of electrical accidents, prevention of electric accidents, PPE used. Protection systems: Fuse, circuit breakers and overload relays – protection against over voltage and under voltage. Electric shock. Primary and secondary electric shocks, AC and DC current shocks. Safety precautions against shocks. Safety precautions in small and residential building installations. Safety procedures in electric plant. Case studies: To visit electrical sub stations, local distribution systems, observe and share the experience and report.

Module-5

Introduction to Chemical safety, Labelling of chemicals, acid hoods. Handling of acids, eye washers and showers. Safety thinking, accident investigation, safety policy of the company, safety, loss prevention and control, check list for LPG installations, safety precautions using CNG, fire prevention and safety audit, confined space entry, risk assessment.

Case studies: To visit chemical laboratory of the college and other chemical industries like LPG , CNG facilities and report.

Course Outcomes: At the end of the course, the student will be able to:

CO1: Understand the basic safety terms and international standards.

- CO2: Identify the hazards and risk analysis around the work environment and industries.
- CO3: Use the safe measures while performing work in and around the work area of the available laboratories. Able to recognize the sign boards and its application
- CO4: Recognise the types of fires extinguishers and to demonstrate the portable extinguishers used for different classes of fires.
- CO5: Report the case studies by sharing experience of the employees working in housekeeping,

laboratories like workshops, electrical labs, machine shops, electronics and computer laboratories.

CO6: Recognise the chemical and electrical hazards for its prevention and control.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textb	ook/s			·
1	Industrial Safety and Management	L M Deshmukh	McGraw Hill Education (India) private Limited	ISBN-13: 978-0-07- 061768-1
2	Fire Prevention Hand Book	Derek, James	Butter Worth's and Company, London	1986
3	Electrical Safety, fire safety and safety management	S.Rao, R K Jain and Saluja	Khanna Publishers	ISBN: 978- 81-7409- 306-6
4	Industrial health and safety management	A.M.Sarma	Himalya publishing house	
5	Chemical process Industrial safety	K S N Raju	McGraw Hill Education (India) private Limited.	ISBN-13: 978-93-329- 0278-7
6	Environmental engineering	Gerard Kiely	McGraw Hill Education (India) private Limited	ISBN-13: 978-0-07- 063429-9
Refere	ence Books			1
1	The Environment Act (Protection) 1986	Commercial Law Publishers (India) Pvt. Ltd. New Delhi.		
2	Water (Prevention and control of pollution) act 1974	Commercial Law publishers (India)		

		Pvt. Ltd., New Delhi.		
•	To visit respective Institution: sto	res, office, housekeep	ing area, laboratories.	
•	To visit local industries, workshop	os, district firefighting	system facility and local electrica	al power
	stations.			

Choice Based Cru	B. E. MECHANICAL ENG edit System (CBCS) and Out	INEERING come Based Education (OBE)
Choice Based Ch	SEMESTER – V		1
	OPEN ELECTIVE		
	OPTIMISATION TECH	NIQUES	
Course Code	18ME754	CIE Marks	40
Teaching Hours / Week (L:T:P)	3:0:0	SEE Marks	60
Credits	03	Exam Hours	03
To introduce non-linear pro To introduce the Integer pr Module-1	ogramming techniques. rogramming method.	plex engineering problems.	Dhiastiva functio
Introduction: Statement of optim Classification of optimisation pro equations involved Single variable optimisation: Ne constraints: Necessary and sufficie with equality constraints, Solution multipliers, Multivariable optimization Module-2	blems based on :constrain ecessary and sufficient cont nt conditions, Semi definite h by direct substitution, La	nts, nature of design variab onditions, Multivariable opt e case, Saddle point, Multi va ogrange Multipliers, Interpre	les, nature of th imization with n riable optimizatio tation of Lagrang
dichotomous search, interval hal methods: Quadratic and cubic in method, secant method. Module-3 Nonlinear Programming: One-D	terpolation method, direct	root method, Newton meth	nod, Quasi-Newto
Elimination methods: unrestricted dichotomous search, interval hal methods: Quadratic and cubic in-	d search, fixed step size ving method, Fibonacci m	e, accelerated step size, E nethod, golden section met	Exhaustive search hod, Interpolatio
dichotomous search, interval hal methods: Quadratic and cubic in	d search, fixed step size ving method, Fibonacci m	e, accelerated step size, E nethod, golden section met	Exhaustive search hod, Interpolatio
dichotomous search, interval hal methods: Quadratic and cubic in	d search, fixed step size ving method, Fibonacci m	e, accelerated step size, E nethod, golden section met	Exhaustive search hod, Interpolatio
dichotomous search, interval hal methods: Quadratic and cubic in method, secant method. Module-4 Nonlinear Programming: Indirect method, Fletcher Reeves method,	ed search, fixed step size ving method, Fibonacci m terpolation method, direct Search (Descent) Metho	e, accelerated step size, f nethod, golden section met root method, Newton meth ds: Gradient of a function	Exhaustive search hod, Interpolatio nod, Quasi-Newto
dichotomous search, interval hal methods: Quadratic and cubic in method, secant method. Module-4 Nonlinear Programming: Indirect method, Fletcher Reeves method, I Module-5 Integer Programming: Introductio cutting plane, Gomory's method programming, Branch-and-Bound N	ed search, fixed step size ving method, Fibonacci m terpolation method, direct Search (Descent) Metho Newton's method, Davidson n, Graphical representation for all-integer programm Method.	e, accelerated step size, E nethod, golden section met root method, Newton meth ds: Gradient of a function n-Fletcher-Powell method.	Exhaustive search hod, Interpolatio hod, Quasi-Newto n, Steepest decer
dichotomous search, interval hal methods: Quadratic and cubic in method, secant method. Module-4 Nonlinear Programming: Indirect method, Fletcher Reeves method, I Module-5 Integer Programming: Introductio cutting plane, Gomory's method programming, Branch-and-Bound I Course Outcomes: At the end of th CO1: Define and use optimizat problem.	ed search, fixed step size ving method, Fibonacci m terpolation method, direct : Search (Descent) Metho Newton's method, Davidson n, Graphical representation for all-integer programm <u>Method.</u> In course, the student will b ion terminology, concepts,	e, accelerated step size, E nethod, golden section met root method, Newton meth ds: Gradient of a function n-Fletcher-Powell method. n, Gomory's cutting plane me ing problems, Bala's algori e able to: and understand how to class	Exhaustive search hod, Interpolation nod, Quasi-Newton n, Steepest decent ethod: concept of thm for zero—or
dichotomous search, interval hal methods: Quadratic and cubic in method, secant method. Module-4 Nonlinear Programming: Indirect method, Fletcher Reeves method, F Module-5 Integer Programming: Introductio cutting plane, Gomory's method programming, Branch-and-Bound M Course Outcomes: At the end of th CO1: Define and use optimizat problem. CO2: Understand how to classi	ed search, fixed step size ving method, Fibonacci m terpolation method, direct Search (Descent) Metho Newton's method, Davidson n, Graphical representation for all-integer programm Method. le course, the student will b ion terminology, concepts, fy an optimization problem	e, accelerated step size, f nethod, golden section met root method, Newton meth ds: Gradient of a function n-Fletcher-Powell method. n, Gomory's cutting plane me ing problems, Bala's algori e able to: and understand how to class	Exhaustive search hod, Interpolatio hod, Quasi-Newto h, Steepest decer ethod: concept of thm for zero–on
dichotomous search, interval hal methods: Quadratic and cubic in method, secant method. Module-4 Nonlinear Programming: Indirect method, Fletcher Reeves method, I Module-5 Integer Programming: Introductio cutting plane, Gomory's method programming, Branch-and-Bound I Course Outcomes: At the end of th CO1: Define and use optimizat problem.	ed search, fixed step size ving method, Fibonacci m terpolation method, direct Search (Descent) Metho Newton's method, Davidson n, Graphical representation for all-integer programm Method. le course, the student will b ion terminology, concepts, fy an optimization problem	e, accelerated step size, f nethod, golden section met root method, Newton meth ds: Gradient of a function n-Fletcher-Powell method. n, Gomory's cutting plane me ing problems, Bala's algori e able to: and understand how to class	Exhaustive search hod, Interpolatio hod, Quasi-Newto h, Steepest decer ethod: concept of thm for zero–on
dichotomous search, interval hal methods: Quadratic and cubic in method, secant method. Module-4 Nonlinear Programming: Indirect method, Fletcher Reeves method, J Module-5 Integer Programming: Introductio cutting plane, Gomory's method programming, Branch-and-Bound M Course Outcomes: At the end of th CO1: Define and use optimizat problem. CO2: Understand how to classi	ed search, fixed step size ving method, Fibonacci m terpolation method, direct Search (Descent) Metho Newton's method, Davidson n, Graphical representation for all-integer programm <u>Method.</u> te course, the student will b ion terminology, concepts, fy an optimization problem concepts formulate the prob	e, accelerated step size, for the section method, golden section method, newton method, Newton method section method. ds: Gradient of a function method. a, Gomory's cutting plane method. a, Gomory's cutting plane method. and understand how to class blem of the systems.	Exhaustive search hod, Interpolatio hod, Quasi-Newto h, Steepest decer ethod: concept of thm for zero–on
dichotomous search, interval hal methods: Quadratic and cubic in method, secant method. Module-4 Nonlinear Programming: Indirect method, Fletcher Reeves method, I Module-5 Integer Programming: Introductio cutting plane, Gomory's method programming, Branch-and-Bound N Course Outcomes: At the end of th CO1: Define and use optimizat problem. CO2: Understand how to classi CO3: Apply the mathematical o	ed search, fixed step size ving method, Fibonacci m terpolation method, direct Search (Descent) Metho Newton's method, Davidson n, Graphical representation for all-integer programm Method. le course, the student will b ion terminology, concepts, fy an optimization problem concepts formulate the prob optimal solution using the	e, accelerated step size, for the section method, golden section method, newton method, Newton method section method. ds: Gradient of a function method. a, Gomory's cutting plane method. a, Gomory's cutting plane method. and understand how to class blem of the systems.	Exhaustive search hod, Interpolatio hod, Quasi-Newto h, Steepest decer ethod: concept of thm for zero–on
dichotomous search, interval hal methods: Quadratic and cubic in method, secant method. Module-4 Nonlinear Programming: Indirect method, Fletcher Reeves method, I Module-5 Integer Programming: Introductio cutting plane, Gomory's method programming, Branch-and-Bound I Course Outcomes: At the end of th CO1: Define and use optimizat problem. CO2: Understand how to classi CO3: Apply the mathematical o CO4: Analyse the problems for	ed search, fixed step size ving method, Fibonacci m terpolation method, direct Search (Descent) Metho Newton's method, Davidson n, Graphical representation for all-integer programm Method. le course, the student will b ion terminology, concepts, fy an optimization problem concepts formulate the prob optimal solution using the	e, accelerated step size, for the section method, golden section method, newton method, Newton method section method. ds: Gradient of a function method. a, Gomory's cutting plane method. a, Gomory's cutting plane method. and understand how to class blem of the systems.	Exhaustive searc hod, Interpolatio nod, Quasi-Newto n, Steepest decer ethod: concept of thm for zero–or
dichotomous search, interval hal methods: Quadratic and cubic in method, secant method. Module-4 Nonlinear Programming: Indirect method, Fletcher Reeves method, I Module-5 Integer Programming: Introductio cutting plane, Gomory's method programming, Branch-and-Bound N Course Outcomes: At the end of th CO1: Define and use optimizat problem. CO2: Understand how to classi CO3: Apply the mathematical o CO4: Analyse the problems for CO5: Interpret the optimum so	ed search, fixed step size ving method, Fibonacci m terpolation method, direct Search (Descent) Metho Newton's method, Davidson n, Graphical representation for all-integer programm <u>Method.</u> We course, the student will b ion terminology, concepts, fy an optimization problem concepts formulate the prob optimal solution using the lution.	e, accelerated step size, E nethod, golden section met root method, Newton meth ds: Gradient of a function n-Fletcher-Powell method. n, Gomory's cutting plane me ing problems, Bala's algori e able to: and understand how to class olem of the systems. algorithms.	Exhaustive searc hod, Interpolatio nod, Quasi-Newto n, Steepest decer ethod: concept of thm for zero–or

- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textb	ook/s			
1	Engineering Optimization Theory and Practice	S. S. Rao	John Wiley & Sons	Fourth Edition 2009
2	Optimisation Concepts and Applications in Engineering	A. D. Belegundu, T.R. Chanrupatla,	Cambridge University Press	2011
Refer	ence Books			
1	Engineering Optimization: Methods and Applications	Ravindran, K. M. Ragsdell, and G. V. Reklaitis	Wiley, New York	2nd ed. 2006

	Choice Based Cr		tcome Based Education (OBE)	
	(SEMESTER - V COMPUTRE AIDED MANUF		
Cour	rse Code	18MEL76	CIE Marks	40
	hing Hours /Week (L:T:P)	0:2:2	SEE Marks	60
Cred		02	Exam Hours	03
	through CNC simulation soTo educate the students of	oftware by using G-Codes a on the usage of CAM packag	ges.	-
	 To make the students unc 	lerstand the importance of	automation in industries throug	gh exposure to
	FMS, Robotics, and Hydra	ulics and Pneumatics.		
SI.		Experime	nts	
No.				
	-	PART - A		
1		rrection of syntax and logic re.	codesfor 2 turning and 2 millin cal errors, and verification of to	
		PART - B		
2	3 typical simulations to be CAM. Program generation u	carried out using simulat using software. Optimize sp	on of Turning, Drilling, Milling op ion packages like: CademCAM pindle power, torque utilization	Lab-Pro, Master a, and cycle time
2	3 typical simulations to be CAM. Program generation of Generation and printing of layouts. Cut the part in singl Post processingof CNC pro-	carried out using simulat using software. Optimize sp shop documents like pro e block and auto mode and	ion packages like: CademCAM	Lab-Pro, Master and cycle time bol list, and too een.
2	3 typical simulations to be CAM. Program generation of Generation and printing of layouts. Cut the part in singl Post processingof CNC pro- MISTUBISHI.	carried out using simulat using software. Optimize sp shop documents like pro e block and auto mode and	ion packages like: CademCAM bindle power, torque utilization bcess and cycle time sheets, to measure the virtual part on scr	Lab-Pro, Master and cycle time bol list, and toc een.
2	3 typical simulations to be CAM. Program generation of Generation and printing of layouts. Cut the part in singl Post processingof CNC pro- MISTUBISHI. (Only for Demo/Viva voce) FMS (Flexible Manufacturin and linear shuttle conveyor carried out on simple compo Robot programming: Using of objects (2 programs). Pneumatics and Hydraulics,	carried out using simulat using software. Optimize sp shop documents like pro- e block and auto mode and ograms for standard CNC <u>PART - C</u> Bag System) : Programming of Interfacing CNC lathe, mil onents. Teach Pendent & Offline p	ion packages like: CademCAM bindle power, torque utilization bcess and cycle time sheets, to measure the virtual part on scr	Lab-Pro, Master a, and cycle time cool list, and too een. SINUMERIC an val system (ASRS an and ASRS to b and place, stackin
3	3 typical simulations to be CAM. Program generation of Generation and printing of layouts. Cut the part in singl Post processingof CNC pro- MISTUBISHI. (Only for Demo/Viva voce) FMS (Flexible Manufacturin and linear shuttle conveyor carried out on simple compo Robot programming: Using of objects (2 programs). Pneumatics and Hydraulics, conducted.	carried out using simulat using software. Optimize sp shop documents like pro- e block and auto mode and ograms for standard CNC PART - C og System): Programming o Interfacing CNC lathe, mil onents. Teach Pendent & Offline p , Electro-Pneumatics: 3 typ	ion packages like: CademCAM poindle power, torque utilization pocess and cycle time sheets, to measure the virtual part on scr control systems like FANUC , of Automatic storage and Retriev ling with loading unloading arm programming to perform pick ar	Lab-Pro, Master a, and cycle time cool list, and too een. SINUMERIC an val system (ASRS an and ASRS to b and place, stackin
3	3 typical simulations to be CAM. Program generation of Generation and printing of layouts. Cut the part in singl Post processingof CNC pro- MISTUBISHI. (Only for Demo/Viva voce) FMS (Flexible Manufacturin and linear shuttle conveyor carried out on simple compo Robot programming: Using of objects (2 programs). Pneumatics and Hydraulics, conducted. duct of Practical Examination:	carried out using simulat using software. Optimize sp shop documents like pro- e block and auto mode and ograms for standard CNC <u>PART - C</u> og System): Programming o Interfacing CNC lathe, mil onents. Teach Pendent & Offline p , Electro-Pneumatics: 3 typ	ion packages like: CademCAM poindle power, torque utilization pocess and cycle time sheets, to measure the virtual part on scr control systems like FANUC , of Automatic storage and Retriev ling with loading unloading arm programming to perform pick ar pical experiments on Basics of t	Lab-Pro, Master a, and cycle time cool list, and too een. SINUMERIC an val system (ASRS an and ASRS to b and place, stackin
3 Cond L. Al 2. Br th	3 typical simulations to be CAM. Program generation of Generation and printing of layouts. Cut the part in singl Post processingof CNC pro- MISTUBISHI. (Only for Demo/Viva voce) FMS (Flexible Manufacturin and linear shuttle conveyor carried out on simple compo- Robot programming: Using of objects (2 programs). Pneumatics and Hydraulics, conducted. duct of Practical Examination: I laboratory experiments are t reakup of marks and the instru- e examiners.	carried out using simulat using software. Optimize sp shop documents like pro- e block and auto mode and ograms for standard CNC PART - C PART - C Interfacing CNC lathe, mil onents. Teach Pendent & Offline p , Electro-Pneumatics: 3 typ o be included for practical e interfacions printed on the cover	ion packages like: CademCAM poindle power, torque utilization pocess and cycle time sheets, to measure the virtual part on scr control systems like FANUC , of Automatic storage and Retriev ling with loading unloading arm programming to perform pick ar poical experiments on Basics of t examination.	Lab-Pro, Master a, and cycle time bol list, and too een. SINUMERIC an val system (ASRS an and ASRS to b and place, stackin hese topics to b
3 Cond L. Al 2. Br th 3. St 5che	3 typical simulations to be CAM. Program generation of Generation and printing of layouts. Cut the part in singl Post processingof CNC pro- MISTUBISHI. (Only for Demo/Viva voce) FMS (Flexible Manufacturin and linear shuttle conveyor carried out on simple compo- Robot programming: Using of objects (2 programs). Pneumatics and Hydraulics, conducted. duct of Practical Examination: I laboratory experiments are t reakup of marks and the instru- e examiners. udents can pick one experime me of Examination:	carried out using simulat using software. Optimize sp shop documents like pro- e block and auto mode and ograms for standard CNC PART - C og System): Programming of Interfacing CNC lathe, mil onents. Teach Pendent & Offline p , Electro-Pneumatics: 3 typ o be included for practical e octions printed on the cover nt from the questions lot p	ion packages like: CademCAM poindle power, torque utilization pocess and cycle time sheets, to measure the virtual part on scr control systems like FANUC , of Automatic storage and Retriev ling with loading unloading arm programming to perform pick ar poical experiments on Basics of t examination.	Lab-Pro, Master a, and cycle time bol list, and too een. SINUMERIC an val system (ASRS an and ASRS to b and place, stackin hese topics to b
3 Cond L. Al 2. Br th 3. St Sche Dne	3 typical simulations to be CAM. Program generation of Generation and printing of layouts. Cut the part in singl Post processingof CNC pro- MISTUBISHI. (Only for Demo/Viva voce) FMS (Flexible Manufacturin and linear shuttle conveyor carried out on simple compo- Robot programming: Using of objects (2 programs). Pneumatics and Hydraulics, conducted. duct of Practical Examination: I laboratory experiments are t reakup of marks and the instru- e examiners. udents can pick one experime ime of Examination: question from Part A: 40 mark	carried out using simulat using software. Optimize sp shop documents like pro- e block and auto mode and ograms for standard CNC PART - C g System): Programming o Interfacing CNC lathe, mil- onents. Teach Pendent & Offline p , Electro-Pneumatics: 3 typ o be included for practical of actions printed on the cover nt from the questions lot p	ion packages like: CademCAM poindle power, torque utilization pocess and cycle time sheets, to measure the virtual part on scr control systems like FANUC , of Automatic storage and Retriev ling with loading unloading arm programming to perform pick ar poical experiments on Basics of t examination.	Lab-Pro, Master a, and cycle time bol list, and too een. SINUMERIC an val system (ASRS an and ASRS to b and place, stackin hese topics to b
3 Cond 1. Al 2. Br th 3. St Sche One	3 typical simulations to be CAM. Program generation of Generation and printing of layouts. Cut the part in singl Post processingof CNC pro- MISTUBISHI. (Only for Demo/Viva voce) FMS (Flexible Manufacturin and linear shuttle conveyor carried out on simple compo- Robot programming: Using of objects (2 programs). Pneumatics and Hydraulics, conducted. duct of Practical Examination: I laboratory experiments are t reakup of marks and the instru- e examiners. udents can pick one experime me of Examination:	carried out using simulat using software. Optimize sp shop documents like pro- e block and auto mode and ograms for standard CNC PART - C g System): Programming o Interfacing CNC lathe, mil- onents. Teach Pendent & Offline p , Electro-Pneumatics: 3 typ o be included for practical of actions printed on the cover nt from the questions lot p	ion packages like: CademCAM poindle power, torque utilization pocess and cycle time sheets, to measure the virtual part on scr control systems like FANUC , of Automatic storage and Retriev ling with loading unloading arm programming to perform pick ar poical experiments on Basics of t examination.	Lab-Pro, Master a, and cycle time bol list, and too een. SINUMERIC an val system (ASRS an and ASRS to b and place, stackin hese topics to b

Cho	B. E. MECHANICAL E ice Based Credit System (CBCS) and	Outcome Based Education (OBE)			
	SEMESTER				
Course Code	DESIGN L		40		
Course Code 18MEL77 CIE Marks 40 Tracking the set (Mark) 0.2.2 0.2.2 0.2.2					
Teaching Hours /Wee Credits	k (L:T:P) 0:2:2 02	SEE Marks Exam Hours	60 03		
Course Learning Obj		Examinours	03		
		logarithmic decrement, damping an	d damning		
ratio.			a aamping		
	d the techniques of balancing of rota	ating masses			
	concept of the critical speed of a rota				
-		-			
	he concept of stress concentration u				
	e the equilibrium speed, sensitivenes	•			
		nt in an oil film of a hydrodynamic jo	ournal bearing.		
SI.	Experi	ments			
No.		•			
1 Determination	PART - /	A crement, damping ratio and damping	. coofficient in		
	freedom vibrating systems (longitud		g coencient in		
2 Balancing of rot					
	of critical speed of a rotating shaft				
		oower and effort of Porter/Proell /Ha	artnel		
Governor.					
	PART -	В			
5 Determination	of Fringe constant of Photo-elastic m	aterial using.			
	subjected to diametral compression.				
	specimen (four-point bending.				
		elasticity for simple components like	•		
		cular hole under compression, 2D Cra	ane hook		
	of Pressure distribution in Journal be		ling using Strain		
	of stresses in Curved beam using stra	member subjected to combined load	ang using stran		
	the end of the course, the student w	d vibration of single degree freedom	systems		
critical	and inequency of the free and force		systems,		
speed of shafts					
	ing of rotating masses.				
CO3: Analyse the gove		sine whether all still be used			
	ses in disk, beams, plates and hook u				
	f Pressure distribution in Journal bea	0			
	ss and strains using strain gauges in c	compression and bending test and st	ress		
distribution					
in curved beams					
Conduct of Practical I					
	iments are to be included for practic				
Breakup of marks a the examiners.	ha the instructions printed on the co	over page of answer script to be stric	liy adhered by		
	no experiment from the questions lo	t propored by the examiners			

Scheme of Examination: One question from Part A: 40 marks One question from Part B: 40 Marks Viva voce: 20 Marks Total: 100 Marks

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) **SEMESTER - VIII**

ENERGY ENGINEERING				
Course Code	18ME81	CIE Marks	40	
Teaching Hours /Week (L:T:P)	3:0:0	SEE Marks	60	
Credits	03	Exam Hours	03	

Course Learning Objectives:

- Understand energy scenario, energy sources and their utilization
- Learn about energy conversion methods
- Study the principles of renewable energy conversion systems.

Module-1

STEAM GENERATORS Coal and ash handling, Generation of steam using forced circulation, high and supercritical pressures, LaMount, Benson, Velox, Loeffer, Schmidt steam generators, Cooling towers and Ponds, Accessories such as Superheaters, De-superheater, Economizers, Air preheaters.

Module-2

Solar Energy: Introduction, Solar radiation at the earth's surface, Solar radiation measurements, Flat plate collectors, Focussing collectors, Solar pond, Solar electric power generation-Solar photovoltaics.

Biomass Energy: Photosynthesis, photosynthetic oxygen production, energy plantation. Bio Chemical Route: Biogas production from organic wastes by anaerobic fermentation, Bio gas plants-KVIC, Janta, Deenbhandu models, factors affecting bio gas generation. Thermal gasification of biomass, updraft and downdraft Module-3

Geothermal Energy: Forms of geothermal energy, Dry steam, wet steam, hot dry rock and magmatic chamber systems.

Tidal Energy: Tidal power, Site selection, Single basin and double basin systems, Advantages and disadvantages of tidal energy.

Wind Energy: Wind energy-Advantages and limitations, wind velocity and wind power, Basic components of wind energy conversion systems, horizontal and vertical axis wind mills, coefficient of performance of a wind mill rotor, Applications of wind energy.

Module-4

Hydroelectric plants: Advantages & disadvantages of water power, Hydrographs and flow duration curvesnumericals, Storage and pondage, General layout of hydel power plants- components such as Penstock, surge tanks, spill way and draft tube and their applications, pumped storage plants, Detailed classification of hydroelectric plants, water hammer.

Ocean Thermal Energy: Ocean thermal energy conversion, Principle and working of Rankine cycle, Problems associated with OTEC.

Module-5

NUCLEAR ENERGY Principles of release of nuclear energy-Fusion and fission reactions. Nuclear fuels used in the reactors, Chain reaction, Moderation, breeding, Multiplication and thermal utilization factors. General components of a nuclear reactor and materials, Brief description-Pressurized water reactor, Boiling water reactor, Sodium graphite reactor, Fast Breeder reactor, Homogeneous graphite reactor and gas cooled reactor, Radiation hazards, Shielding, Nuclear waste, Radioactive waste disposal.

Course Outcomes: At the end of the course the student will be able to:

CO1: Understand the construction and working of steam generators and their accessories.

CO2: Identify renewable energy sources and their utilization.

CO3: Understand principles of energy conversion from alternate sources including wind, geothermal, ocean, biomass, nuclear, hydel and tidal.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	ook/s			
1	Power Plant Engineering	P. K. Nag	Tata McGraw Hill Education Private Limited, New Delhi	Third Edition, 2012.
2	Power Plant Engineering	Arora and Domkundwar	Dhanpat Rai & Co. (P) Ltd.	Sixth Edition, 2012.
3	Non-conventional Sources of Energy	G.D.Rai	Khanna Publishers, New Delhi	Fifth Edition, 2015.
4	Non-conventional energy resources	B H Khan	McGraw Hill Education	3rd Edition
Refere	ence Books			
1	Power Plant Engineering	R. K. Rajput	Laxmi publication New Delhi	
2	Principles of Energy conversion	A. W. Culp Jr	McGraw Hill	1996
3	Power Plant Technology	M.M. EL-Wakil	McGraw Hill International	1994
4	Solar Energy: principles of Thermal Collection and Storage	S.P. Sukhatme	Tata McGraw-Hill	1984

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - VIII Professional Elective-4 CNC MACHINE TOOLS

Course Code	18ME821	CIE Marks	40	
Teaching Hours /Week (L:T:P)	3:0:0	SEE Marks	60	
Credits	03	Exam Hours	03	

Course Learning Objectives:

- To understand fundamentals of the CNC technology.
- To get exposed to constructional features of CNC machine tools.
- To know the concepts of CNC machine tool drives and feedback systems.
- To understand the programming methods in CNC machines.
- To understand the cutting tools used, and work holding devices on CNC machine tools.

Module-1

INTRODUCTION TO CNC MACHINE TOOLS: Evolution of CNC Technology, principles, features, advantages, applications, CNC and DNC concept, classification of CNC Machines – turning centre, machining centre, grinding machine, EDM, types of control systems, CNC controllers, characteristics, interpolators– Computer Aided Inspection.

Module-2

STRUCTURE OF CNC MACHINE TOOL: CNC Machine building, structural details, configuration and design, guide ways – Friction, Anti friction and other types of guide ways, elements used to convert the rotary motion to a linear motion – Screw and nut, recirculating ball screw, planetary roller screw, recirculating roller screw, rack and pinion, spindle assembly, torque transmission elements – gears, timing belts, flexible couplings, Bearings.

Module-3

DRIVES AND CONTROLS: Spindle drives – DC shunt motor, 3 phase AC induction motor, feed drives –stepper motor, servo principle, DC and AC servomotors, Open loop and closed loop control, Axis measuring system – synchro, synchro-resolver, gratings, moiré fringe gratings, encoders, inductosysn, laser interferometer.

Module-4

CNC PROGRAMMING: Coordinate system, structure of a part program, G & M Codes, tool length compensation, cutter radius and tool nose radius compensation, do loops, subroutines, canned cycles, mirror image, parametric programming, machining cycles, manual part programming for machining centre and turning centre.

Computer Aided CNC Part Programming: Need for computer aided part programming, Tools for computer aided part programming, APT, CAD/CAM based part programming for well-known controllers such as Fanuc, Heidenhain, Sinumerik etc., and generation of CNC codes from CAM packages.

Module-5

TOOLING AND WORK HOLDING DEVICES: Introduction to cutting tool materials – Carbides, Ceramics, CBN, PCD–inserts classification, qualified, semi qualified and pre-set tooling, tooling system for Machining centre and Turning centre, work holding devices for rotating and fixed work parts, modular fixtures, economics of CNC, maintenance of CNC machines.

Course Outcomes: At the end of the course the student will be able to:

- CO1: Understand evolution, classification and principles of CNC machine tools.
- CO2: Learn constructional details of CNC machine tools, selection of standard components used for CNC machine tools for accuracy and productivity enhancement.
- CO3: Select drives and positional transducers for CNC machine tools.
- CO4: Apply CNC programing concepts of for two axis turning centers and three axis vertical milling centers to generate programs different components.

CO5: Generate CNC programs for popular CNC controllers.

CO6: Analyse and select tooling and work holding devices for different components to be machined on CNC machine tools.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	ok/s			
1	Mechatronics	HMT	Tata McGraw-Hill Publishing Company Limited, New Delhi	2005
2	Computer Control of Manufacturing systems	Koren Y	McGraw Hill	1986
3	Computer Numerical Control Machines	Radhakrishnan P	New Central Book Agency	2002
Refere	nce Books			
1	CNC Machining Hand Book	James Madison	Industrial Press Inc	1996
2	Programming of CNC Machines	Ken Evans, John Polywka& Stanley Gabrel	Industrial Press Inc, New York	Second Edition2002
3	CNC Programming Hand book	Peter Smid	Industrial Press Inc	2000
4	CAD/CAM	Rao P.N.	Tata McGraw-Hill Publishing Company Limited	2002
5	Computer Numerical Control	Warren S. Seames	Thomson Delmar	Fourth Edition 2002

B. E. MECHANICAL ENGINEERING				
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)				
SEMESTER - VIII				
Professional Elective-4				
TRIBOLOGY				

Course Code	18ME822	CIE Marks	40
Teaching Hours /Week (L:T:P)	3:0:0	SEE Marks	60
Credits	03	Exam Hours	03

Course Learning Objectives:

- To educate the students on the importance of friction, the related theories/laws of sliding and rolling friction and the effect of viscosity of lubricants.
- To expose the students to the consequences of wear, wear mechanisms, wear theories and analysis of wear problems.
- To make the students understand the principles of lubrication, lubrication regimes, theories of hydrodynamic and the advanced lubrication techniques.
- To expose the students to the factors influencing the selection of bearing materials for different sliding applications.
- To introduce the concepts of surface engineering and its importance in tribology.

Module-1

Introduction to tribology: Historical background, practical importance, and subsequent use in the field. **Lubricants**: Types and specific field of applications. Properties of lubricants, viscosity, its measurement, effect of temperature and pressure on viscosity, lubrication types, standard grades of lubricants, and selection of lubricants.

Module-2

Friction: Origin, friction theories, measurement methods, friction of metals and non-metals. **Wear:** Classification and mechanisms of wear, delamination theory, debris analysis, testing methods and standards. Related case studies.

Module-3

Hydrodynamic journal bearings: Friction forces and power loss in a lightly loaded journal bearing, Petroff's equation, mechanism of pressure development in an oil film, and Reynold's equation in 2D.

Introduction to idealized journal bearing, load carrying capacity, condition for equilibrium, Sommerfeld's number and it's significance; partial bearings, end leakages in journal bearing, numerical examples.

Module-4

Plane slider bearings with fixed/pivoted shoe: Pressure distribution, Load carrying capacity, coefficient of friction, frictional resistance in a fixed/pivoted shoe bearing, center of pressure, numerical examples.

Hydrostatic Lubrication: Introduction to hydrostatic lubrication, hydrostatic step bearings, load carrying capacity and oil flow through the hydrostatic step bearing, numerical examples. Introduction to Hydrostatic journal bearings.

Module-5

Bearing Materials: Commonly used bearings materials, and properties of typical bearing materials. Advantages and disadvantages of bearing materials.

Introduction to Surface engineering: Concept and scope of surface engineering.

Surface modification – transformation hardening, surface melting, thermo chemical processes.

Surface Coating – plating, fusion processes, vapor phase processes. Selection of coating for wear and corrosion resistance.

Course Outcomes: At the end of the course, the student will be able to:

CO1: Understand the fundamentals of tribology and associated parameters.

CO2: Apply concepts of tribology for the performance analysis and design of components experiencing relative

motion.

CO3: Analyse the requirements and design hydrodynamic journal and plane slider bearings for a given application.

CO4: Select proper bearing materials and lubricants for a given tribological application.

CO5: Apply the principles of surface engineering for different applications of tribology.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	ok/s		•	
1	Introduction to Tribology	B. Bhushan	John Wiley & Sons, Inc., New York	2002
2	Engineering Tribology	Prasanta Sahoo	PHI Learning Private Ltd, New Delhi	2011
3	Engineering Tribology	J. A. Williams	Oxford Univ. Press	2005
Referen	nce Books			
1	Introduction to Tribology in bearings	B. C. Majumdar	Wheeler Publishing	
2	Engineering Tribology	G. W. Stachowiak and A. W. Batchelor	Butterworth-Heinemann	1992
3	Friction and Wear of Materials	Ernest Rabinowicz	John Wiley &Sons	1995
4	Basic Lubrication Theory	A. Cameron	Ellis Hardwoods Ltd., UK	
5	Handbook of tribology: materials, coatings and surface treatments	B.Bhushan, B.K. Gupta	McGraw-Hill	1997

Choice Based Cr	B. E. MECHANICAL ENGI edit System (CBCS) and Out SEMESTER - VII	come Based Education (OBE)	
	Professional Electiv		
NO	N-DESTRUCTIVE TESTINGAN		
Course Code	18ME823	CIE Marks	40
Teaching Hours /Week (L:T:P)	3:0:0	SEE Marks	60
Credits	03	Exam Hours	03
Course Learning Objectives:			
 To introduce the basic prin 	ciples, techniques, equipme	nt, applications and limitations o	of Non-
Destructive Testing (NDT) r	methods such as Visual, Pene	etrant Testing, Magnetic Particle	e Testing,
Ultrasonic Testing, Radiogr	aphy, Eddy Current.		
 To enable selection of appr 	ropriate NDT methods.		
• To identify advantages and	l limitations of NDT methods		
	pments and future trends in		
Module-1			
the detection of manufacturing det Various physical characteristics of r aided. Module-2			
and evaluation of test indications, Module-3 THERMOGRAPHY AND EDDY CUR inspection methods, Techniques for infrared detectors, Instrumentation currents, Properties of eddy curr arrangement, Applications, advant	RENT TESTING (ET) : Thermore applying liquid crystals, Ad points and methods, application rents, Eddy current sensing	ography- Principles, Contact a vantages and limitation – infran ons. Eddy Current Testing-Gen elements, Probes, Instrument	nd non -conta ed radiation ar eration of edu
Module-4			
ULTRASONIC TESTING (UT) AND A Ultrasonic Testing-Principle, Transc beam, instrumentation, data repre Diffraction. Acoustic Emission Tech	ducers, transmission and puls sentation, A/Scan, B-scan, C	-scan. Phased Array Ultrasound,	-
Module-5			
RADIOGRAPHY (RT): Principle, inte and use of filters and screens, ge density, speed, contrast, characte Fluoroscopy- Xero-Radiography, Co	ometric factors, Inverse sq eristic curves, Penetrameter	uare, law, characteristics of film rs, Exposure charts, Radiograph	ms – grainines
Course Outcomes: At the end of th CO1: Classify various 144on-destru		able to:	
CO2: Check different metals and al	loys by visual inspection met	hod.	
CO3: Explain and perform non-dest test, X- ray and Gamma ray			est, Ultrasonic
CO4: Identify defects using relevan	t NDT methods.		

CO5: Differentiate various defect types and select the appropriate NDT methods for betterevaluation.

CO6: Document the testing and evaluation of the results.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	ok/s		I	1
1	Practical Non-Destructive	Baldev Raj,	Narosa Publishing	2009
	Testing	T.Jayakumar,	House	
		M.Thavasimuthu		
2	Non-Destructive Testing	Ravi Prakash	New Age International	1st revised
	Techniques		Publishers	edition2010
Referer	nce Books			
1	ASM Metals Handbook,"Non-	American Society of	Metals Park, Ohio, USA,	2000
	Destructive Evaluation and	Metals,		
	Quality Control", Volume-17			
2	Introduction to Non-	Paul E Mix,	Wiley	2nd Edition
	destructive testing: a training			New Jersey,
	guide			2005
3	Handbook of Nondestructive	Charles, J. Hellier	McGraw Hill, New York	2001
	evaluation			
ASNT, A	American Society for Non Destruct	ive Testing, Columbus, Ohi	io, NDT Handbook,Vol. 1, Le	eak Testing, Vo
	d Penetrant Testing, Vol. 3, Infrare			
Electro	magnetic Testing, Vol. 6, Acoustic	Emission Testing, Vol. 7. U	Itrasonic Testing.	

B.E, VIII Semester, Mechanical Engineering Choice Based Credit System (CBCS) and Outcome Based Education (OBE) (Effective from the academic year 2018-19)

Professional Elective-IV

AUTOMOBILE ENGINEERING

Course Code	18ME824	CIE Marks	40
Teaching Hours /Week (L:T:P)	3:0:0	SEE Marks	60
Credits	03	Exam Hours	03

Course Learning Objectives:

- The layout and arrangement of principal parts of an automobile
- The working of transmission and brake systems
- The operation and working of steering and suspension systems
- To know the Injection system and its advancements
- To know the automobile emissions and its effects on environment

Module - 1

ENGINE COMPONENTS AND IT'S PRINCIPLE PARTS: Spark Ignition (SI) & Compression Ignition (CI) engines, cylinder – arrangements and their relatives merits, Liners, Piston, connecting rod, crankshaft, valves, valve actuating mechanisms, valve and port timing diagrams, Types of combustion chambers for S.I.Engine and C.I.Engines, methods of a Swirl generation, choice of materials for different engine components, engine positioning. Concept of HCCI engines, hybrid engines, twin spark engine, electric car. **COOLING AND LUBRICATION**: cooling requirements, types of cooling- thermo siphon system, forced circulation water cooling system, water pump, Radiator, thermostat valves. Significance of lubrication, splash and forced feed system.

Module - 2

TRANSMISSION SYSTEMS: Clutch-types and construction, gear boxes- manual and automatic, gear shift mechanisms, over drive, transfer box, fluid flywheel, torque converter, propeller shaft, slip joints, universal joints, Differential and rear axle, Hotchkiss Drive and Torque Tube Drive. BRAKES: Types of brakes, mechanical compressed air, vacuum and hydraulic braking systems, construction and working of master and wheel cylinder, brake shoe arrangements, Disk brakes, drum brakes, Antilock –Braking systems, purpose and operation of antilock-braking system, ABS Hydraulic Unit, Rear-wheel antilock & Numerical

Module - 3

STEERING AND SUSPENSION SYSTEMS: Steering geometry and types of steering gear box-Power Steering, Types of Front Axle, Suspension, Torsion bar suspension systems, leaf spring, coil spring, independent suspension for front wheel and rear wheel, Air suspension system. IGNITION SYSTEM: Battery Ignition system, Magneto Ignition system, electronic Ignition system

Module - 4

SUPERCHARGERS AND TURBOCHARGERS: Naturally aspirated engines, Forced Induction, Types of superchargers, Turbocharger construction and operation, Intercooler, Turbocharger lag.

FUELS, FUEL SUPPLY SYSTEMS FOR SI AND CI ENGINES: Conventional fuels, alternative fuels,

normal and abnormal combustion, cetane and octane numbers, Fuel mixture requirements for SI engines, types of carburetors, C.D.& C.C. carburetors, multi point and single point fuel injection systems, fuel transfer pumps, Fuel filters, fuel injection pumps and injectors. Electronic Injection system, Common Rail Direct Injection System

Module - 5

AUTOMOTIVE EMISSION CONTROL SYSTEMS: Different air pollutants, formation of photochemical smog and causes. Automotive emission controls, controlling crankcase emissions, controlling evaporative emissions, Cleaning the exhaust gas, Controlling the air-fuel mixture, Controlling the combustion process, Exhaust gas recirculation, Treating the exhaust gas, Air-injection system, Air-aspirator system, Catalytic converter.

EMISSION STANDARDS: Euro I, II, III and IV norms, Bharat Stage II, III, IV norms. Motor Vehicle Act

Course Outcomes:

- To identify the different parts of an automobile and it's working
- To understand the working of transmission and braking systems
- To comprehend the working of steering and suspension systems
- To learn various types of fuels and injection systems

•To know the cause of automobile emissions, its effects on environment and methods to reduce the emissions.

TEXT BOOKS:

- 1. Automobile engineering, Kirpal Singh, Vol I and II (12th Edition) Standard Publishers 2011
- 2. Automotive Mechanics, S. Srinivasan, (2nd Edition) Tata McGraw Hill 2003.

REFERENCE BOOKS

- 1. Automotive mechanics, William H Crouse & Donald L Anglin (10th Edition) Tata McGraw Hill Publishing Company Ltd., 2007.
- 2. Automotive mechanics: Principles and Practices, Joseph Heitner, D Van Nostrand Company, Inc
- 3. Fundamentals of Automobile Engineering, K.K.Ramalingam, Scitech Publications (India) Pvt. Ltd.
- 4. Automobile Engineering, R. B. Gupta, SatyaPrakashan, (4th Edition) 1984.

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - VIII Professional Elective-4 TOOL DESIGN

Course Code	18ME825	CIE Marks	40
Teaching Hours /Week (L:T:P)	3:0:0	SEE Marks	60
Credits	03	Exam Hours	03

Course Learning Objectives:

- To develop capability to design and select single point and multipoint cutting tools for various machining operations.
- Exposure to variety of locating and clamping methods available.
- To enable the students to design jigs and fixtures for simple components.
- To expose the students to the design/selection procedure of press tools and die casting dies.

Module-1

Introduction to tool design: Tooling, requirements of a tool designer, general tool design procedure, tool engineering functions and its importance to enhance productivity and quality.

Review of cutting tool materials. Tool angles and signature, Carbide inserts grades - ISO designation and applications, tool holders for turning-ISO designation. Solid type tool, brazed tip tool, throwaway indexable insert types, coated carbides and chip breakers.

Design of single point cutting tools: Design of shank dimensions using strength and rigidity considerations for rectangular, square and round cross section and selection of tool geometry.

Module-2

Design of Multi Point Cutting Tools: Types of drills, Drill bit design - elements like back taper, web thickness, land width, margin, flute length and cross section and selection of tool geometry. Re-sharpening of drill bit. Tool holders for milling, different tapers used for mounting tool holders in milling, ISO designation. Tool mounting systems.

Design of milling cutters: Design of elements like number of teeth and height, circular pitch, body thickness, chamfer width, fillet radius and selection of tool geometry. Profile sharpened and form relieved milling cutters. Re-sharpening of side and face milling cutter and end mill.

Module-3

Jigs and Fixtures: Functions and differences between jigs and fixtures, advantages in mass production, design principles, economics of jigs and fixtures.

Location: 3-2-1 Principle of location, different types of locating elements.

Clamping: Principles of clamping, types of clamping devices, and power clamping.

Drill bushes;

Drill jigs: Different types, exercises of designing jigs for simple components.

Fixture Design: Turning fixtures, milling fixtures, grinding fixtures, fixturing for CNC machining centers, and modular fixtures. Design exercises on fixtures for turning and milling for simple components

Module-4

Press tools: Classification and working of power presses. Concept and calculations of press tonnage and shut height of a press, components of a simple die, press tool operation, die accessories, shearing action in punch & die, clearance, shear on punch and die, Centre of pressure, and strip layout.

Simple, progressive, compound, combination and inverted dies. Design problems on blanking and piercing dies for simple components.

Bending dies – Introduction, bend allowance, spring back, edge bending die design.

Module-5

Drawing dies – Single action, double action and triple action dies, factors affecting drawing and drawing die design. Design of drawing dies for simple components.

Die casting: Die casting alloys, terminology- core, cavity, sprue, slug, fixed and movable cores, finger cams, draft, ejector pins and plates, gate, goose nozzle, over-flow, platten, plunger, runner, vent, water-line etc. Types of Dies: Single cavity, multi cavity dies, combination dies, unit dies, advantages and disadvantages of types of dies; finishing, trimming and inspection of die casting components, safety, and modern trends in die casting dies.

Assignment:

Course work includes a **ToolDesign project**. Tool design project should enable the students to design a tooling like Jig or a fixture for a simple component, fixture for a simple component on CNC machining centers, design of a simple blanking and piercing die, progressive die, drawing die etc. Any one of these exercises should be given as an assignment. A group of students (maximum number in a group should be 4) should submit assembly drawing and part drawings, completely dimensioned, indicating the necessary manufacturing tolerances, surface finish symbols and geometric tolerances wherever necessary. Tool design project must be completed using appropriate solid modeling software. Computer generated drawings must be submitted. Design calculations must be hand written and should be included in the report. Tool design project should be given due credit in internal assessment.

Course Outcomes: At the end of the course, the student will be able to:

CO1: Select appropriate cutting tools required for producing a component.

CO2: Understand and interpret cutting tool and tool holder designation systems.

CO3: Select suitable locating and clamping devices for a given component for various operations.

CO4: Analyze and design a jig/fixture for a given simple component.

CO5: Understand various press tools and press tool operations.

CO6: Classify and explain various die casting and injection moulding dies.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	ok/s			
1	Tool Design	Cyril Donaldson,	Mc Graw Hill	5 th edition, 2017
		George H. Lecain, V.C.Goold,	Education	
2	Manufacturing technology	P.N.Rao,	Mc Graw Hill	4 th edition, 2013
			Education	
Referen	ce Books	·		
1	Jigs and Fixtures	P.H.Joshi	Mc Graw Hill	3 rd edition, 2010
			Education	
2	Fundamentals of Tool Design	John.G. Nee, William	Society of	2010
		Dufraine, John W.	Manufacturing	
		Evans, Mark Hill	Engineers	
3	Fundamentals of Tool Design	Frank W.Wilson	PHI publications	
4	An introduction to Jig and Tool design	Kempester M.H.A	VIVA Books Pvt.Ltd.	2004
5	Metal cutting and Tool Design	RanganathB.J	Vikas publishing house	

Updated on 16.04.2020/28092020

6	Metal cutting theory and practice	V. Arshinov& G. Alekseev	MIR publishers, Moscow	
7	Design and production of metal cutting tools	Rodin	Beekman publishers	
8	Production Technology	HMT	TataMc Graw Hill	2013.

	redit System (CBCS) and Outo SEMESTER - VIII		E)
	Professional Electiv		
	FRACTURE MECHAN		
Course Code	18ME826	CIE Marks	40
Teaching Hours /Week (L:T:P)	3:0:0	SEE Marks	60
Credits	03	Exam Hours	03
Course Learning Objectives:		·	
• To expose the students to	the fundamentals of mechar	ics of fracture of materials	
• The students will learn ab	out stress / strain and deform	nation fields near a crack tip	o, fracture
characterizing parameter	s like stress intensity factor ar	d J integral and kinetics of	fatigue crack
growth.			-
•	o fundamentals of linear elasti	c fracture mechanics, nonli	inear (Flastic-
•	cs and fatigue crack growth.		
,	I methods for determining the	fracture toughness (for or	ample ASTM
standard procedure for JI	-	inacture toughness (101 ex	
	of failure of structures by fatig	ue crack growth.	
Module-1 Fracture mechanics principles: In			
problems The Ainy stress typetics			
Module-2 Plasticity effects: Theory of Plasti of the plastic zone for plane stree Determination of Stress intensity stress intensity factors. Experime requirements, etc.	ess and plane strain cases. Th y factors and plane strain fr	iptical cracks, Numerical pr one correction. Dugdale's a ne plate thickness effect, n acture toughness: Introduc	pproach. The shape numerical problems ction, estimation of
Module-2 Plasticity effects: Theory of Plasti of the plastic zone for plane stre Determination of Stress intensity stress intensity factors. Experime requirements, etc. Module-3	ic deformation, Irwin plastic ze ess and plane strain cases. Th y factors and plane strain fra ental method- Plane strain fra	iptical cracks, Numerical properties of the properties of the plate thickness effect, na facture toughness: Introduce toughness test, The plate test, The plat	oblems. pproach. The shape numerical problems ction, estimation of Standard test, size
Module-2 Plasticity effects: Theory of Plasti of the plastic zone for plane stree Determination of Stress intensity stress intensity factors. Experime requirements, etc. Module-3 The energy release rate, Criter modulus. Stability. Elastic plastic fracture mechanic	ic deformation, Irwin plastic ze ess and plane strain cases. Th y factors and plane strain fra ental method- Plane strain fra ia for crack growth. The cr s: Fracture beyond general y	iptical cracks, Numerical properties of the plate thickness effect, nature toughness: Introduce acture toughness test, The acture tes	oblems. pproach. The shape pumerical problems ction, estimation o Standard test, size compliance. Tearing g displacement. The
Module-2 Plasticity effects: Theory of Plasti of the plastic zone for plane stre Determination of Stress intensity stress intensity factors. Experime requirements, etc. Module-3 The energy release rate, Criter modulus. Stability. Elastic plastic fracture mechanic Use of CTOD criteria. Experimenta	ic deformation, Irwin plastic ze ess and plane strain cases. Th y factors and plane strain fra ental method- Plane strain fra ia for crack growth. The cr s: Fracture beyond general y	iptical cracks, Numerical properties of the plate thickness effect, nature toughness: Introduce acture toughness test, The acture tes	oblems. pproach. The shape pumerical problems ction, estimation o Standard test, size compliance. Tearing g displacement. The
Module-2 Plasticity effects: Theory of Plasti of the plastic zone for plane stre Determination of Stress intensity stress intensity factors. Experime requirements, etc. Module-3 The energy release rate, Criter modulus. Stability. Elastic plastic fracture mechanic Use of CTOD criteria. Experimenta Module-4	ic deformation, Irwin plastic ze ess and plane strain cases. Th y factors and plane strain fra ental method- Plane strain fra ia for crack growth. The cra s: Fracture beyond general y al determination of CTOD. Par	iptical cracks, Numerical properties of the correction. Dugdale's and plate thickness effect, in acture toughness: Introduct acture toughness test, The acture test, The acture test, Th	oblems. pproach. The shape pumerical problems ction, estimation o Standard test, size compliance. Tearing g displacement. The al CTOD.
Module-2 Plasticity effects: Theory of Plasti of the plastic zone for plane stree Determination of Stress intensity stress intensity factors. Experime requirements, etc. Module-3 The energy release rate, Criter modulus. Stability. Elastic plastic fracture mechanic Use of CTOD criteria. Experimenta Module-4 J integral: Use of J integral. Lir	ic deformation, Irwin plastic ze ess and plane strain cases. The y factors and plane strain fra- ental method- Plane strain fra- ia for crack growth. The cra- is: Fracture beyond general y al determination of CTOD. Par mitation of J integral. Exper	iptical cracks, Numerical properties of the plate thickness effect, nature toughness: Introduce acture toughness test, The acture test, the acture	oblems. pproach. The shape pumerical problems ction, estimation o Standard test, size compliance. Tearing g displacement. The al CTOD. J integral and the
Module-2 Plasticity effects: Theory of Plasti of the plastic zone for plane stree Determination of Stress intensity stress intensity factors. Experime requirements, etc. Module-3 The energy release rate, Criter modulus. Stability. Elastic plastic fracture mechanic Use of CTOD criteria. Experimenta Module-4 J integral: Use of J integral. Lir parameters affecting J integral. Dynamics and crack arrest: Crac	ic deformation, Irwin plastic ze ess and plane strain cases. The y factors and plane strain fra- ental method- Plane strain fra- ria for crack growth. The cra- ris: Fracture beyond general y al determination of CTOD. Par mitation of J integral. Exper- ck speed and kinetic energy.	iptical cracks, Numerical properties of the plate thickness effect, macture toughness: Introduce acture toughness test, The acture test, the actur	oblems. pproach. The shape pumerical problems ction, estimation o Standard test, size compliance. Tearing g displacement. The al CTOD. J integral and the and elastic energy
Module-2 Plasticity effects: Theory of Plasti of the plastic zone for plane stree Determination of Stress intensity stress intensity factors. Experime requirements, etc. Module-3 The energy release rate, Criter modulus. Stability. Elastic plastic fracture mechanic Use of CTOD criteria. Experimenta Module-4 J integral: Use of J integral. Lir parameters affecting J integral.	ic deformation, Irwin plastic ze ess and plane strain cases. The y factors and plane strain fra- ental method- Plane strain fra- ria for crack growth. The cra- ris: Fracture beyond general y al determination of CTOD. Par mitation of J integral. Exper- ck speed and kinetic energy.	iptical cracks, Numerical properties of the plate thickness effect, in acture toughness: Introduce acture toughness test, The acture test, the	oblems. pproach. The shape pumerical problems ction, estimation o Standard test, size compliance. Tearing g displacement. The al CTOD. J integral and the and elastic energy

Course Outcomes: At the end of the course the student will be able to:

- CO1: Analyse the effects of crack like defects on the performance of Aerospace, Civil, and Mechanical Engineering structures.
- CO2: Apply the concepts of fracture mechanics to select appropriate materials for engineering structures to insure damage tolerance.
- CO3: Understand mechanics of crack tip fields and appropriate fracture characterizing parameters like stress intensity factor and J integral or nonlinear energy release rate and how to compute them using various methods.
- CO4: Apply the concepts of fracture mechanics to determine critical crack sizes and fatigue crack propagation rates in engineering structures leading to life estimation.

CO5: Understand the status of academic research in field of fracture mechanics.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	ok/s	•		
1	Elements of fracture mechanics	Prasanth Kumar	Wheeter publication	1999
2	Fracture Mechanics: Fundamentals and Applications	Anderson	CRC press	3rd Ed., 2005
Referer	nce Books			
1	Introduction to fracture mechanics	Karen Hellan	McGraw Hill	2nd Edition
2	Engineering fracture mechanics	S.A. Meguid	Elsevier Applied Science	1989
3	Fracture of Engineering Brittle Materials	Jayatilaka	Applied Science Publishers	1979
4	Fracture and Fatigue Control in Structures	Rolfe and Barsom	Prentice Hall	1977
5	Engineering Fracture Mechanics	Broek	MartinusNijhoff publishers	1982
6	Advanced Fracture Mechanics	M.F.Kanninen and C.H.Popelar	Oxford press	1985

	MECHANICAL ENG		
Course Code	21EME15/25	CIE Marks	50
Teaching Hour/Week (L: T:P:S)	2:0:2:0	SEE Marks	50
Total Hours of Teaching-Learning	40	Total Marks	100
Credits	03	Exam Hours	03
Course Learning Objectives:			
The course will enable the student			
CLO 1 . Acquire a basic understanding	ng role of Mechanical	Engineering in the in	dustry and
society			
CLO 2 . Acquire a basic understanding	ng of the formation of	f steam and its indust	rial
application.			
CLO 3 . Acquire a basic understandir	ng of renewable ener	gy resources and basi	c concepts o
Hydraulic turbines.			
CLO 4 . Acquire knowledge of variou	0 0	, 0	techniques.
CLO 5 . Acquire essential experience			
CLO 6. Acquire knowledge on auton		transport application	and basics
of Refrigeration and Air-Con	0		
CLO 7 . Acquire essential experience	on basic Power tran	smission systems, inc	luding
mechanical linkages.	_		• .
CLO 8. Acquire knowledge of basic of	=	turing principles and	machine
tools and their advancement			
Teaching-Learning Process (General	-		
1. Adopt different types of teachir	-		gh
PowerPoint presentations and		s or Simulations.	
2. Chalk and Talk method for Prob	0		
3. Arrange visits to show the live	•		ICS.
4. Adopt collaborative (Group Lea			
5. Adopt Problem Based Learning		-	
develops thinking skills such as			
6. Conduct Laboratory Demonstra	ations and Practical E	xperiments to enhand	ce
experiential skills.			
	Module 1	<u></u>	
Introduction to Mechanical Engineer	• •		
Role of Mechanical Engineering in Indu			
in different sectors such as Energy, Mar	utacturing, Automot	ive, Aerospace, and M	arine sector
and contribute to the GDP.			
Steam Formation and Application:			

Steam Formation and Application:

Formation of steam and thermodynamic properties of steam (Simple Problems using Steam Tables), Applications of steam in industries namely, Sugar industry, Dairy industry, Paper industry, Food processing industry for Heating/Sterilization, Propulsion/Drive, Motive, Atomization, Cleaning, Moisturization, Humidification

Energy Sources and Power Plants:

Review of energy sources; Construction and working of Hydel power plant, Thermal power plant, Nuclear power plant, Solar power plant, Tidal power plant, Wind power plant. Introduction to basics of Hydraulic turbines and pumps: Principle and Operation of Hydraulic turbines, namely, Pelton Wheel, Francis Turbine and Kaplan Turbine. Introduction to working of Centrifugal Pump.

Laboratory Components:

- 1. Visit any one Conventional or Renewable Energy Power Plant and prepare a comprehensive report.
- 2. Demonstration of Components of any one Turbo-machine through Cut Sections.

3. Visit to an Industry using steam for their process and prepare a comprehensive report.

- Teaching-1. Power-point Presentation,
- **Learning** 2. Video demonstration or Simulations,
- **Process** 3. Chalk and Talk are used for Problem Solving (In-general).
 - 4. Laboratory Demonstrations and Practical Experiments

Module 2

Properties, Composition, and Industrial Application of Engineering Materials:

Metals-Ferrous: Tool steels and stainless steels. Non-ferrous /metals: aluminum alloys. **Ceramics**- Glass, optical fiber glass, cermets. **Composites**- Fiber reinforced composites, Metal matrix Composites. Smart materials- Piezoelectric materials, shape memory alloys, semiconductors, and super-insulators.

Metal Joining Processes:

Soldering, Brazing and Welding: Definitions. Classification and methods of soldering, brazing, and welding. Brief description of arc welding, Oxy-acetylene welding, Introduction to TIG welding and MIG welding.

Heat Transfer Applications:

Review of modes of Heat Transfer; Automobile Radiators; Condensers and evaporators of refrigeration systems; Cooling of Electrical and Electronic Devices; Active, Passive, and Hybrid Cooling.

Laboratory Components

- 1. One exercise each involving Welding, Soldering, and Brazing.
- 2. Study oxy-acetylene gas flame structure and its application to gas welding
- *3.* Demonstration of **anyone** Heat transfer application device and prepare a comprehensive report.

· • • • •	
Teaching-	1. PowerPoint Presentation,
Learning	2. Video demonstration or Simulations,
Process	3. Chalk and Talk are used for Problem Solving (In-general).
	4. Laboratory Demonstrations and Practical Experiments

Module 3

Fundamentals of IC Engines:

Review of Internal Combustion Engines, 2-Strokes and 4-Strokes engines, Components and working principles, Application of IC Engines in Power Generation, Agriculture, Marine and Aircraft Propulsion, Automobile.

Insight into future mobility technology; Electric and Hybrid Vehicles, Components of Electric and Hybrid Vehicles, Drives and Transmission. Advantages and disadvantages of EVs and Hybrid vehicles.

Refrigeration and Air-Conditioning:

Principle of refrigeration, Refrigeration effect, Ton of Refrigeration, COP, Refrigerants and their desirable properties. Principles and Operation of Vapor Compression and Vapor absorption refrigeration. Domestic and Industrial Applications of Refrigerator.

Laboratory	Components:
	f Engine Components through Cut Sections
	strate Components and Working principles of Domestic Refrigerator and prepare a
	hensive report <u>OR</u> Study/visit any commercial centralized Air-Conditioning unit,
-	and various components and operations, and prepare a comprehensive report.
Teaching-	1. PowerPoint Presentation,
Learning	 Chalk and Talk are used for Problem Solving (In-general).
Process	3. Video demonstration or Simulations,
	4. Laboratory Demonstrations and Practical Experiments
	Module 4
Mechanical	Power Transmission:
Gear Drive	s: Types - spur, helical, bevel, worm and rack and pinion, velocity ratio,
	s and their application: simple and compound Gear Trains, Simple numerica
	n Gear trains involving velocity ratios
-	: Components of belt drive and concept of velocity ratio; Types of belt drives, Flat
	7-Belt Drive and Application of Belt Drives.
Simple num	erical problems on Belt drives involving velocity ratios,
-	Chain, Rope drives and their applications
Fundament	tals of Mechanical Linkages: Definitions of Machines and Mechanisms
Applications	s of linear motion, oscillatory motion, rotary motion, ratchet and latches, clamping
reverse mot	ion, pause and hesitation, loading and unloading Mechanisms.
Introductio	on to Robotics:
Robot anato	omy, Joints & links, common Robot configurations. Applications of Robotics in
Material Ha	ndling, Processing, Assembly, and Inspection.
Laboratory	Components:
1. Dem	onstration of the machine consists of Gear Trains.
2. Dem	onstration of various elementary mechanisms and their motion.
3. Dem	onstration of any one model of Robot
Teaching-	1. PowerPoint Presentation,
Learning	2. Chalk and Talk are used for Problem Solving (In-general)
Process	3. Video demonstration or Simulations,
	4. Laboratory Demonstrations and Practical Experiments
	Module 5
	tals of Machine Tools and Operations:
	als of Machining and machine tools,
	n and Working Principle of Lathe, Various Lathe Operations: Turning, Facing, Tape
Turning and	-
	n and Working of Milling Machines and applications.
	n and working of simple Drilling Machines and applications.
-	f layout need not be dealt with for all machine tools)
	on to Modern Manufacturing Tools and Techniques:
CNC : Introd	uction, components of CNC, advantages and applications of CNC, CNC Machinin
centres and	Turning Centers Smart Manufacturing and Industrial IoT.

Introduction to Mechatronics: Concept of open-loop and closed-loop systems, Examples of Mechatronic systems and their working principle. Laboratory Components: 1. Demonstration of developing one model involving Lathe, Milling and Drilling 2. Study/Visit an Industry using CNC/ modern techniques and submit a report 3. Carry out a Case study on anyone Mechatronics device and prepare a comprehensive report. **Teaching-**1. PowerPoint Presentation, Learning 2. Chalk and Talk are used for Problem Solving (In-general). **Process** 3. Students are encouraged to practice only line diagrams for exams. 4. Video demonstration or Simulations, 5. Laboratory Demonstrations and Practical Experiments **Course Outcomes:** At the end of the course, the student will be able to: CO 1. Understand basic concepts of mechanical engineering in the fields of energy and its utilization, materials technology, manufacturing techniques, and transmission systems through demonstrations. CO 2. Understand the application of energy sources in Power generation and utilization, Engineering materials, manufacturing, and machining techniques leading to the latest advancements and transmission systems in day to day activities CO 3. Apply the skills in developing simple mechanical elements and processes Assessment Details both (CIE and SEE): The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together Continuous Internal Evaluation: Theory: 30marks and Lab Component: 20 marks= Total 50 marks 1. Topics taught by Lecture hours need to be assessed by 2. Three tests each for a duration of one hour and an average of the marks scored is reduced to 20 3. Any two *Activities* Namely quizzes, Assignment, seminar/ presentation, mini-project leading to demonstration will be considered for 10 marks. 4. Practical Sessions need to be assessed by appropriate rubrics and viva-voce methods. This will contribute to 20 marks. *Note: Minimum of 80% of the laboratory* components have to be covered. • Rubrics for each Experiment taken average for all Lab components – 15 Marks • Viva-Voce- 5 Marks (more emphasized on demonstration topics) Semester End Examination: Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (**duration 03 hours**)

• The question paper will have ten questions. Each question is set for 20 marks.

• There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.

The students have to answer 5 full questions, selecting one full question from each module.

Suggested Learning Resources:

Books:

- 1. Elements of Mechanical Engineering, K R Gopala Krishna, Subhash Publications, 2008
- 2. Non-Conventional Energy Sources, G.D Rai, Khanna Publishers, 2003
- 3. Elements of Workshop Technology (Vol. 1 and 2), Hazra Choudhry and Nirzar Roy, Media Promoters and Publishers Pvt. Ltd., 2010.
- 4. An Introduction to Mechanical Engineering, Jonathan Wickert and Kemper Lewis, Third Edition, 2012
- 5. Turbo Machines, M. S. Govindegowda and A. M. Nagaraj, M. M. Publications 7Th Ed, 2012
- 6. Manufacturing Technology- Foundry, Forming and Welding, P.N.Rao Tata McGraw Hill 3rd Ed., 2003.
- 7. Internal Combustion Engines, V. Ganesan, Tata McGraw Hill Education; 4th edition, 2017
- 8. Robotics, Appu Kuttan KK K. International Pvt Ltd, volume 1
- 9. Web-links
 - (https://www.tlv.com/global/TI/steam-theory/principal-applications-for-steam.html
 - https://www.forbesmarshall.com/Knowledge/SteamPedia/About-Steam/Fundamental-Applications-of-Steam
 - https://rakhoh.com/en/applications-and-advantages-of-steam-in-manufacturingand-process-industry/)
 - <u>Videos | Makino</u> (For Machine Tool Operation)
 - mechanisms and mechanical devices 4e.pdf (e-book- Mechanical Linkages)

Additional References:

- 10. Basic and Applied Thermodynamics, P.K.Nag, Tata McGraw Hill 2nd Ed., 2002
- 11. Standard Handbook of Machine Design, Joseph E Shigley; Charles R Mischke, Thomas H Brown, Jr., McGraw-Hill, New York, 2004.
- 12. Thermal Management in Electronic Equipment, HCL Technologies, 2010
- 13. Thermal Management of Microelectronic Equipment, L. T. Yeh and R. C. Chu, ASME Press, New York, 2002
- 14. Fundamentals of Robotics: Analysis and Control, Robert J. Schilling, Pearson Education (US).

Engineering Visualization 21EVN15/25 Course Code **CIE Marks** 50 Teaching Hour/Week (L:T:P:S) 2:0:2:0 **SEE Marks** 50 Total Hours of Teaching - Learning **Total Marks** 100 40 03 03 Credits Exam Hours **Course Learning Objectives:** CLO1: To understand the basic principles and conventions of engineering drawing CLO2: To use drawing as a communication mode CLO3: To generate pictorial views using CAD software CLO4: To understand the development of surfaces **CLO5:** To visualise engineering components **Teaching-Learning (General Instructions):** Students should be made aware of powerful engineering communication tool – Drawing. Simple Case studies can be suitably selected by the teacher for hands on practice to induce the feel of • fruitfulness of learning. Appropriate Models, Power Point presentation, Charts, Videos, shall be used to enhance visualization before hands on practice. • For application problems use very generally available actual objects. (Example: For rectangular prism / object; matchbox, carton boxes, book, etc can be used. Similarly for other shapes) Use any CAD software for generating orthographic and pictorial views. Make use of sketch book with graph sheets for manual / preparatory sketching Module1 Introduction: for CIE only Significance of Engineering drawing, BIS Conventions of Engineering Drawing, Free hand sketching of engineering drawing, Scales. Introduction to Computer Aided Drafting software, Co-ordinate system and reference planes HP, VP, RPP & LPP of 2D/3D environment. Selection of drawing sheet size and scale. Commands and creation of Lines, coordinate points, axes, polylines, square, rectangle, polygons, splines, circles, ellipse, text, move, copy, off-set, mirror, rotate, trim, extend, break, chamfer, fillet and curves. **Orthographic Projections of Points, Lines and Planes:** Introduction to Orthographic projections, Orthographic projections of points in all the quadrants. Orthographic projections of lines. (Placed in First quadrant only) Orthographic projections of planes viz triangle, square, rectangle, pentagon, hexagon and circular laminae. (Placed in First quadrant only). Application on projections of Lines & Planes (For CIE only) Module2 **Orthographic Projection of Solids:**

Orthographic projection of right regular solids (Solids Resting on HP only);

Prisms & Pyramids (triangle, square, rectangle, pentagon, hexagon), Cylinders, Cones, Cubes, &Tetrahedron. Application problems on projection of solids.

Projections of Frustum of cone, pyramid & truncated sphere (For CIE only).

Module3

Isometric Projections:

Isometric scale, Isometric projection of hexahedron (cube), right regular prisms, pyramids, cylinders, cones and spheres. Isometric projection of combination of two simple solids.

Conversion of simple isometric drawings into orthographic views.

Problems on applications of Isometric projections of simple objects / engineering components.

Introduction to drawing views using 3D environment (For CIE only).

Module4

Development of Lateral Surfaces of Solids:

Development of lateral surfaces of right regular prisms, cylinders, pyramids, and cones resting with base on HP only. Development of their frustums and truncations.

Problems on applications of development of lateral surfaces like, funnels and trays.

Problems on applications of development of lateral surfaces of transition pieces connecting circular duct and rectangular duct (For CIE Only)

Module5

Multidisciplinary Applications & Practice (For CIE Only):

Free hand Sketching; True free hand, Guided Free hand, Roads, Buildings, Utensils, Hand tools & Furniture's etc **Drawing Simple Mechanisms;** Bicycles, Tricycles, Gear trains, Ratchets, two wheeler cart & Four wheeler carts to dimensions etc

Electric Wiring and lighting diagrams; Like, Automatic fire alarm, Call bell system, UPS system, Basic power distribution system using suitable software

Basic Building Drawing; Like, Architectural floor plan, basic foundation drawing, steel structures- Frames, bridges, trusses using Auto CAD or suitable software,

Electronics Engineering Drawings- Like, Simple Electronics Circuit Drawings.

Graphs & Charts: Like, Column chart, Pie chart, Line charts, Gantt charts, etc. using Microsoft Excel or any suitable software.

Course outcomes

At the end of the course the student will be able to:

- CO 1. Understand and visualize the objects with definite shape and dimensions
- CO 2. Analyze the shape and size of objects through different views
- CO 3. Develop the lateral surfaces of the object
- **CO 4.** Create a 3D view using CAD software.

CO 5. Identify the interdisciplinary engineering components or systems through its graphical representation.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks) and that for SEE minimum passing mark is 35% of the maximum marks (18 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50)in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

Continuous Internal Evaluation (CIE)

- CIE shall be evaluated for max marks 100. Marks obtained shall be accounted for CIE final marks, reducing it by 50%.
- CIE component should comprise of
- Continuous evaluation of Drawing work of students as and when the Modules are covered on the basis of below detailed weightage.
- At least one closed book **Test** covering all the modules on the basis of below detailed weightage.
- Weightage for Test and Continuous evaluation shall be suitably decided by respective course coordinators.

Module	Max. Marks	Evaluation Weigh	ntage in marks
	Weightage	Computer display and print out	Preparatory sketching
		(a)	(b)
Module 1	15	10	05
Module 2	20	15	05
Module 3	20	20	00
Module 4	20	20	00
Module 5	25	15	10
Total	100	80	20
Consideration	n of CIE Marks	Total of (a) + (b) \div 2 = Final CIE m	arks

Semester End Examination (SEE)

- SEE shall be conducted and evaluated for maximum marks 100. Marks obtained shall be accounted for SEE final marks, reducing it by 50%
- Question paper shall be set jointly by both Internal and External Examiner and made available for each batch as per schedule. *Questions are to be set preferably from Text Books*.
- Evaluation shall be carried jointly by both the examiners.
- Scheme of Evaluation: To be defined by the examiners jointly and the same shall be submitted to the university along with question paper.
- One full question shall be set from each of the Module from Modules 1,2,3,4 as per the below tabled weightage details. *However, the student may be awarded full marks, if he/she completes solution on computer display without sketch.*

Module	Max. Marks	Evaluation Weight	tage in marks
	Weightage	Computer display and print out	Preparatory sketching
		(a)	(b)
Module 1	20	15	05
Module 2	30	25	05
Module 3	25	20	05
Module 4	25	20	05
Total	100	80	20
Consideration of SEE Marks		Total of (a) + (b) \div 2 = Final SEE	marks

Suggested Learning Resources:

Text Books

- *Bhatt, N.D., Engineering Drawing: Plane and Solid Geometry*, 53rd edition, Charotar Publishing House Pvt. Limited, 2019.
- *K. R. Gopalakrishna, & Sudhir Gopalakrishna*: Textbook Of Computer Aided Engineering Drawing, 39th Edition, Subash Stores, Bangalore, 2017
- S. N. Lal: Engineering Drawing with an Introduction to AutoCAD : First-angle Projection 1st Edition, Cengage, Publication, 2018
- S.N. Lal, & T Madhusudhan:, Engineering Visulisation, 1st Edition, Cengage, Publication
- Luzadder Warren J., Duff John M., Fundamentals of Engineering Drawing: with an Introduction to Interactive Computer Graphics for Design and Production, Prentice-Hall of India Pvt. Ltd., New Delhi, Eastern Economy Edition, 2005.

Reference Books

- Parthasarathy N. S., Vela Murali, Engineering Drawing, Oxford University Press, 2015.
- Dhawan R. K., A Textbook of Engineering Drawing, 3/e, S. Chand Publishing, 2019.
- Venugopal K., Engineering Drawing and Graphics, New Age International publishers, 2014.
- *Bhattacharya S. K.*, Electrical Engineering Drawing, New Age International publishers, second edition 1998, reprint 2005.
- Chris Schroder, Printed Circuit Board Design using AutoCAD, Newnes, 1997.
- *K S Sai Ram* Design of steel structures, , Third Edition by Pearson
- Nainan p kurian Design of foundation systems, Narosa publications
- A S Pabla, Electrical power distribution, 6th edition, Tata Mcgraw hill