

EXAMINATION SECTION

IMPLEMENTATION OF EXAMINATION REFORMS

Sri Venkateshwara College of Engineering is affiliated to Visvesvaraya Technological University- Belagavi. The SEE exams are conducted as per the guidelines of the university and the question paper setting and valuation is done at university level. The following reforms are implemented in CIE conduction to ensure implementation of AICTE Examination reforms.

I. Bloom's Taxonomy for Assessment Design

- 1) Internal Assessment question papers are set with 30% question in Understand Level, 40% in Apply Level and 30% in Analyze level.
- 2) IA Question Paper Moderation: Question papers will be allocated to moderators for scrutiny. The moderators are selected based on subject proficiency. Moderators scrutinize the question papers with respect to quality, knowledge level distribution and format.
- 3) **Moderation of IA Answer scripts:** For each subject two randomly picked IA scripts will be evaluated by moderator to ensure the uniformity in evaluation. This will ensure the uniformity in evaluation methods.
- 4) Higher order thinking Questions: HoT questions are given as assignment to students to encourage students to think beyond literal questions and to promote critical thinking skills.
- 5) Learning Outcome weightage: The CIE question papers are set such that all learning outcomes are uniformly covered. Three CIE are planned at

uniform intervals as per university guidelines and the question papers are designed such that equal weightage is given to all learning outcomes.

2018 and 2021 Scheme

Test/Cos	CO1	CO2	CO3	CO4	CO5
CIE-1	30	20			
CIE-2		10	30	10	
CIE-3				20	30

2022 Scheme

Test/Cos	CO1	CO2	CO3	CO4	CO5
CIE-1	20	20	10		
CIE-2			10	20	20

- At least 2 Quiz/Course is conducted which promotes self-assessment and makes learning more effective.
- 7) Open ended problems are given as team activity to trigger critical thinking of students.
- 8) Video Assignments are given to students to improve their communication skills.
- Moderation Committee is formed to review the question bank developed by faculty to review and ensure the quality of questions.

II. Open-Book Examinations

Open book CIE is conducted in selected subjects to emphasize more on problem-solving, application of knowledge and higher-order thinking rather.

III. QUESTION PAPER DELIVERY SYSTEM FOR CIE.

The CIE question papers are generated using a Digital Question Paper Delivery System. In this deterministic model, the professor's will be uploading the Moderated question bank by considering the following parameters like Course Outcomes, Knowledge Level, Marks, Complexity of the questions like Easy, Moderate and Difficult. Based on these parameters the deterministic model is defined according to generate the question paper. The preference will be decided by the college, and it will be monitored once in a while to improvise the student to go to next level.

Advantages:

- a. Outcome Based Education concept is implemented (Student Centric Approach)
- b. Faculty can concentrate on Research activities by reducing time for mundane tasks like questions preparation, Scheme Preparation etc., (Once entered data can be used multiple number of times)
- c. Quality of education will improve.

There are other benefits as well for both professors and students.

- Professors can make use it for surprise tests and Slip Tests.
- Repetitive number of tests can be conducted to improve the student Performance.

Principal Dr. NAGESWARA GUPTHA M. PRINCIPAL Sri Venkateshwara College of Engineering Vidyanagar, Bangalore-562 157

MODERATION PROCESS

- Affiliated to VTU, Approved by AICTE, Recognised by UGC u/s 2(f) & 12(B)-

Format No.	ACD 49
Rev. No.	01
Date	01/08/2016
Page	1 of 1

Internal Quality Assurance Cell

Ref: SVCE/IQAC/2023 - 24/

Date: 05/12/2023

CIRCULAR

As per the discussion in the IQAC Committee meeting, all the HoD's are request to form the Moderation / Review Committee in the department level to review / Moderate the CIE Process.

Guidelines for Moderation / Review Committee formation:

- 1. The Chairman of the committee will be the Head of the department.
- Two senior faculty members (Minimum 5 Years of Experience) nominated by Principal / HoD as members of the committee.

Roles and Responsibilities of the Moderation / Review Committee:

Steps for Question Bank Moderation:

- 1. Collection of Question Bank from all the course teachers for all the courses before uploading the questions to the QPDS system.
- 2. Moderation of questions in the question bank as per the Annexure -I.
- Correction in the question bank by the course teacher, if any as per the recommendation of moderation committee.
- 4. Uploading the questions in QPDS system by the course teacher.
- 5. Random verification of correctness of uploaded questions by the committee.

Steps for Moderation of CIE Process:

- 1. Split-up of marks used for each of the different types of assessment in the course may be checked.
- 2. Checking of the questions to find whether it maps to course outcomes.
- **3.** Checking the difficulty level of questions paper ie, is the difficulty level on the high extreme, very easy or otherwise.
- 4. Whether the assessment modes are used to cover the entire syllabus or not.
- 5. Checking the manner of awarding the marks, i.e has correction been at the extremes, liberal or tough?
- 6. Moderation should not be restricted to just assessment but also includes the assessment design (Scheme of Evaluation).

Accredited by NAAC & NBA*

 Format No.
 ACD 49

 Rev. No.
 01

 Date
 01/08/2016

 Page
 1 of 1

- Affiliated to VTU, Approved by AICTE, Recognised by UGC u/s 2(f) & 12(B)-

Internal Quality Assurance Cell

7. After the CIE Testes, need to conduct Moderation of CIE process as per the Annexure - II.

Moderation / Review process may be conducted after each test or after the tests in case there is a large number of failures or high marks.

M 5/12/23 **IOAC** Coordinator

Sol Sol 12/200 COE

Absources

Principal PRINCIPAL Sri Venkateshwara College of Engineering Vidyanagar, Bangalore-562 157

Encl: Annexture 1.

E-Circulation To:

- 1. HoDs: ECE, CSE, ISE, CSE-AI, CSE-DS, CSE-CY, ME, CE, BS.
- 2. Dean Academics, Registrar, COE, Library, Q-RIDES.

SRI VENKATESHWARA COLLEGE OF ENGINEERING - Affiliated to VTU, Approved by AICTE, Recognised by UGC u/s 2(f) & 12(B)-

Accredited by NAAC & NBA*-

Department of

Moderation Committee Report

Pre-Examination Audit of Question Bank

AY: 2023 - 2024

BENGALURU

Course Title	Semester
Course Fine	Course Code
Name of the Faculty Members	

Sl. No.	Parameters						
1	Are the questions evenly distributed to cover the syllabus?						
2	Are the questions complete with necessary data / diagrams / constants?						
3	Are the questions unique (i.e. no repetition) in various sections of the question bank?						
4	Whether mapping of CO/RBT and the questions are done properly?						
5	Is Knowledge levels of the questions are distributed as per the course content.						
6	Is the question bank supports Problem solving levels.						
7	Is the question bank has Hot's knowledge levels questions.						
8	How many questions to be corrected in the question bank?						
Rem	arks:						

Certified that the auditing of the above-mentioned question bank was carried out with the comments listed above. The question bank can be accepted / rejected.

Name of the Moderation Committee Members	Designation	Signature with Date

- Draft.-ght-secron.

Programme Coordinator

SAMPLE CIRCULAR

Format No.	ACD 49
Rev. No.	01
Date	01/08/2016
Page	1 of 1

EXAMINATION SECTION

Ref: SVCE/EXAM/2023-24/055

Date: 23/01/2024

The II CIE for Second Year UG Courses (III Sem) is scheduled form 13th Feb 2023; The Test will be conducted for 100 Marks with 3 hours of duration

CIE and Practical IA for 3rd Sem UG Courses

All faculty are informed to prepare the question bank and submit it to Moderation committee. The moderation committee has to complete the process as per the Circular issued by IQAC Cell before 5th February 2024 (Monday).

Minimum	number	of	questions	to	be	uploaded
		-				

Кх	К2	К3	К4	Total
Full Module	6	6	6	18
Half Module	3	3	3	9

For 2.5 modules minimum number of questions to be uploaded is 45

The Assessments for Practical Courses should be scheduled by respective departments from 29th January to 9th February with the approval of Principal.

NOTE:

- 1. Duplicate Questions Should be avoided in Question Bank. Question bank must have only Unique Questions.
- 2. Faculties need not include header details. Header details will be taken care by QPDS team.
- 3. The template given for question bank should not be modified. Example for Module 1, it
- should be M1, for Knowledge level K1, K2. 4. Auto Numbering must be avoided.
- 5. If there are any images in the question bank the resolution should be $3 \ge 5.5$ cms.

All are requested to stick on to the schedule and support in smooth conduction of the QPDS Process.

Controller of Examinations Controller of Examination Sri Venkateshwara College of Engineering E-Circulation agar, Bengaluru-562 157 1. HoDs: ECE, CSE, ISE, CA, CY, DS, ME, CE, BS, MBA.

2. Dean – Academics, Registrar, Library, Q-RIDES, IQAC.

Purper 20

Dr. NAGESWARA GUPTHAM. PRINCIPAL Sri Venkateshwara College of Engineering Vidyanagar, Bangalore-562 157

SAMPLE QUESTION BANK

S1	Cos	KLs	Μ		Questions		Marks	
1	CO1	K2	M 1	Explain diff	erent functional units of	f a digital computer.	10	
2	CO1	K2	M 1		ored program concept?		10	
				units of a sto	ored program digital co	mputer with a block		
				diagram.				
3	CO1	K2	M 1	Explain the	function of processor re	egisters with a block	10	
				diagram.				
4	CO1	K2	M 1	Explain diff	ferent functional units	of a computer. Mention	10	
						ers i) PC i) MAR iii) IR.	10	
5	CO1	K3	M 1	Describe an	Describe and explain the connections between the processor			
					nd the main memory.			
6	CO1	K3	M 1	Describe tl	Describe the basic operational concepts between the			
					processor and memory.			
7	CO1	K2	M1	-	Explain with a neat diagram the connection between the			
				•	processor and the computer memory.			
8	CO1	K2	M1	What is a bus? Explain single bus and multiple bus structure				
				used to interconnect functional units in computer system.				
9	CO1	K4	M1	Assuming that the reference computer is ultra SPARCIO				
						SPARC-IH processor. A		
					-	computers hence ordered		
				-	-	EC2000 (run on reference		
					new computer). Follo	wing observations were		
				made.	D			
				Programs	Run time on	Run time on new		
				1	reference computer 50 minutes	computer 5 minutes		
				1		5 minutes		
					75 minutes	4 minutes		
				3	60 minutes	6 minutes		
				4 The commo	<u>30 minutes</u>	3 minutes		
				-		vill place the orders for		
					- •	he overall SPEC rating is will the system manager		
					the purchase of new con	•		
10	CO1	K4	M1	•		by T=(N*S)/R. Program	10	
10		17.4	1411	-		omputer. Both computers	10	
						a. Effective value of S in		
						it is only 1.5 for CISC		
						same clock rate R. Find		
						ine as a percentage of N		
						e for execution on both		
						the ratio of the clock rate		
						higher than for the CISC		
	1		1	IN IOI UIC IN				

				Machine.	
11	CO1	K2	M1	Explain the basic performance equation? How to measure	10
				the performance of the computer? Explain.	
12	CO1	K2	M 1	What is performance measurement? Explain the overall	10
				SPEC rating for the computer in a program suite.	
13	CO1	K2	M1	With suitable example, explain how performance is	10
				measured using SPEC rating and give its significance.	1.0
14	CO1	K2	M1	What is performance measurement? Explain the overall SPEC rating for the computer in a Program suit.	10
15	CO1	K2	M1	Distinguish between unsigned and signed integers. With	10
15	001	112	1111	examples, indicate when each type of integers will be useful.	10
16	CO1	K2	M1	What is overflow in integer arithmetic? Explain how	10
				overflow can be detected, with an illustration.	
17	CO1	K4	M 1	Represent 1259.125_{10} in single precision and double	10
				precision formats.	
18	CO1	K4	M1	Represent - 307.1875 ₁₀ in single precision and double	10
				precision formats.	
19	CO2	K2	M2	What is an addressing mode? Explain different addressing	10
				modes.	
20	CO2	K2	M2	Differentiate addressing modes used to specify the location	10
				of operand found in most computers.	
21	CO2	K2	M2	Explain with examples, all the generic addressing modes,	10
				with assembler syntax.	
22	CO2	K2	M2	What are assembler directives? explain any two directives.	10
23	CO2	K2	M2	What is the function of an assembler directive? Give two	10
				examples of assembler directives used for the reservation of	
				memory location for variables? State their functions.	
24	CO2	K3	M2	Describe and explain flowchart showing operation of	10
				assembler during first pass and second pass	
25	CO2	K2	M2	Explain the operation of stack with an example.	10
26	CO2	K2	M2	What is subroutine linkage. How are parameter are passed	10
				to subroutine.	
27	CO2	K2	M2	Explain the functions to be performed by a typical I/O	10
				interface with a typical input or output interface.	
28	CO2	K4	M2	Aanlyze and Write a program to evaluate the arithmetic	10
				statement $Y=(a+b)*(c+d)$ using three-address,two-	
				address,one-address and zero address instructions	
29	CO2	K2	M2	Explain Basic instruction cycle with interrupt	10
30	CO3	K4	M3	Analyze and Design flow chart showing operation of	10
				assembler during Second pass?	
31	CO3	K2	M3	What is Interrupt? With neat diagram explain the concept of	10

				Interrupt	
32	CO3	K4	M3	Develop the hardware mechanism for handling multiple	10
				interrupt requests	
33	CO3	K2	M3	Explain Direct Memory Access(DMA)?	10
34	CO3	K2	M3	Explain Hardware Controlled Data Transfer ?	10
35	CO3	K4	M3	Develop the hardware mechanism for three data transfer	10
				modes of DMA	
36	CO3	K3	M3	Build a distributed arbitration scheme?	10
37	CO3	K3	M3	With neat sketches, explain the various approaches to bus	10
				arbitration.	
38	CO3	K3	M3	With neat sketches, explain the flowchart for I/O services	10
				routine.	
39	CO3	K2	M3	Explain Basic I/O Interfacing Techniques ?	10
40	CO3	K3	M3	With neat sketches, Explain the Single Level Interrupt	10
				System.	

SAMPLE CIE QUESTION PAPER

STANA CROUPON	Accredited by NAAC & NBA*	Format	ACD-50
(()))-	SVCEBENGALURU	Rev No.	01
* SVCE *	SRI VENKATESHWARA COLLEGE OF ENGINEERING — Affiliated to VTU, Approved by AICTE, Recognised by UGC u/s 2(f) & 12(B)—	Date	01/08/2016
CBCS SCHEM	ME2022	VE	

Department of ECE

Continuous Internal Examination I

Course Code: BEC306C	Course Title: Computer Semeste Organization and Architecture		
Date :24-01-2024	Time : 12:30PM to 2:00PM	Max. Marks:50	
Instructions: <u>Answer One Full</u>	Question From each Part		
S.N Cos KLs	Questions		Marks

(PART A)

1a	CO1	K3	Describe and explain the connections between the processor and the main memory.	10
1b	CO1	K2	5	10
			(OR)	
2a	CO1	K2	With suitable example, explain how performance is measured using SPEC rating and give its significance.	10
2b	CO1	K2	Distinguish between unsigned and signed integers. With examples, indicate when each type of integers will be useful.	10
			(PART B)	
3a 3b	CO2 CO2	K2 K2	What are assembler directives? explain any two directives. Explain the operation of stack with an example.	10 10
00	02	N2	(OR)	10
4a	CO2	K2	Explain the functions to be performed by a typical I/O interface with a typical input or output interface.	10
4b	CO2	K4		10

5a	CO3	K3	With neat sketches, explain the flowchart for I/O services routine.	10
----	-----	----	---	----

(OR)

^{5b} CO3 K3 With neat sketches, Explain the Single Level Interrupt System. 10